Tiled Forward Rendering #5

Merged
SeanOMik merged 15 commits from feature/tiled-forward-rendering into main 2024-03-23 14:38:43 +00:00
24 changed files with 1454 additions and 669 deletions

View File

@ -12,5 +12,4 @@ lyra-engine = { path = "../../", version = "0.0.1" }
#lyra-ecs = { path = "../../lyra-ecs"}
anyhow = "1.0.75"
async-std = "1.12.0"
tracing = "0.1.37"
fps_counter = "2.0.0"
tracing = "0.1.37"

View File

@ -1,102 +0,0 @@
use lyra_engine::{
ecs::{query::{Res, View}, Component}, game::Game, input::ActionHandler, math::{EulerRot, Quat, Vec3}, plugin::Plugin, scene::CameraComponent, DeltaTime
};
/* enum FreeFlyCameraActions {
MoveForwardBackward,
MoveLeftRight,
MoveUpDown,
LookLeftRight,
LookUpDown,
LookRoll,
} */
#[derive(Clone, Component)]
pub struct FreeFlyCamera {
pub speed: f32,
pub slow_speed_factor: f32,
pub look_speed: f32,
pub mouse_sensitivity: f32,
pub look_with_keys: bool,
}
impl Default for FreeFlyCamera {
fn default() -> Self {
Self {
speed: 4.0,
slow_speed_factor: 0.25,
look_speed: 0.3,
mouse_sensitivity: 1.0,
look_with_keys: false,
}
}
}
impl FreeFlyCamera {
#[allow(dead_code)]
pub fn new(speed: f32, slow_speed_factor: f32, look_speed: f32, mouse_sensitivity: f32, look_with_keys: bool) -> Self {
Self {
speed,
slow_speed_factor,
look_speed,
mouse_sensitivity,
look_with_keys,
}
}
}
pub fn free_fly_camera_controller(delta_time: Res<DeltaTime>, handler: Res<ActionHandler>, view: View<(&mut CameraComponent, &FreeFlyCamera)>) -> anyhow::Result<()> {
let delta_time = **delta_time;
for (mut cam, fly) in view.into_iter() {
let forward = cam.transform.forward();
let left = cam.transform.left();
let up = Vec3::Y;
let move_y = handler.get_axis_modifier("MoveUpDown").unwrap_or(0.0);
let move_x = handler.get_axis_modifier("MoveLeftRight").unwrap_or(0.0);
let move_z = handler.get_axis_modifier("MoveForwardBackward").unwrap_or(0.0);
let mut velocity = Vec3::ZERO;
velocity += move_y * up;
velocity += move_x * left;
velocity += move_z * forward;
if velocity != Vec3::ZERO {
cam.transform.translation += velocity.normalize() * fly.speed * delta_time; // TODO: speeding up
}
let motion_x = handler.get_axis_modifier("LookLeftRight").unwrap_or(0.0);
let motion_y = handler.get_axis_modifier("LookUpDown").unwrap_or(0.0);
let motion_z = handler.get_axis_modifier("LookRoll").unwrap_or(0.0);
let mut camera_rot = Vec3::ZERO;
camera_rot.y -= motion_x * fly.mouse_sensitivity;
camera_rot.x -= motion_y * fly.mouse_sensitivity;
camera_rot.z -= motion_z * fly.mouse_sensitivity;
if camera_rot != Vec3::ZERO {
let look_velocity = camera_rot * fly.look_speed * delta_time;
let (mut y, mut x, _) = cam.transform.rotation.to_euler(EulerRot::YXZ);
x += look_velocity.x;
y += look_velocity.y;
x = x.clamp(-1.54, 1.54);
// rotation is not commutative, keep this order to avoid unintended roll
cam.transform.rotation = Quat::from_axis_angle(Vec3::Y, y)
* Quat::from_axis_angle(Vec3::X, x);
}
}
Ok(())
}
/// A plugin that adds the free fly camera controller system to the world. It is expected that
/// there is a [`FreeFlyCamera`] in the world, if there isn't, the camera would not move.
pub struct FreeFlyCameraPlugin;
impl Plugin for FreeFlyCameraPlugin {
fn setup(&self, game: &mut Game) {
game.with_system("free_fly_camera_system", free_fly_camera_controller, &[]);
}
}

View File

@ -1,28 +1,8 @@
use std::ptr::NonNull;
use lyra_engine::{assets::gltf::Gltf, ecs::{system::{BatchedSystem, Criteria, CriteriaSchedule, IntoSystem}, Component, World}, game::Game, input::{Action, ActionHandler, ActionKind, ActionMapping, ActionMappingId, ActionSource, InputActionPlugin, KeyCode, LayoutId, MouseAxis, MouseInput}, math::{self, Transform, Vec3}, render::light::{directional::DirectionalLight, SpotLight}, scene::CameraComponent, DeltaTime};
use lyra_engine::{assets::gltf::Gltf, change_tracker::Ct, ecs::{query::{QueryBorrow, Res, View, ViewState}, system::{BatchedSystem, Criteria, CriteriaSchedule, IntoSystem}, Component, World}, game::Game, input::{Action, ActionHandler, ActionKind, ActionMapping, ActionMappingId, ActionSource, InputActionPlugin, KeyCode, LayoutId, MouseAxis, MouseInput}, math::{self, Quat, Transform, Vec3}, render::{light::{directional::DirectionalLight, PointLight, SpotLight}, window::{CursorGrabMode, WindowOptions}}, scene::{CameraComponent, FreeFlyCamera, FreeFlyCameraPlugin, ACTLBL_LOOK_LEFT_RIGHT, ACTLBL_LOOK_ROLL, ACTLBL_LOOK_UP_DOWN, ACTLBL_MOVE_FORWARD_BACKWARD, ACTLBL_MOVE_LEFT_RIGHT, ACTLBL_MOVE_UP_DOWN}, DeltaTime};
use lyra_engine::assets::ResourceManager;
mod free_fly_camera;
use free_fly_camera::{FreeFlyCameraPlugin, FreeFlyCamera};
#[derive(Clone, Copy, Hash, Debug)]
pub enum ActionLabel {
MoveForwardBackward,
MoveLeftRight,
MoveUpDown,
LookLeftRight,
LookUpDown,
LookRoll,
}
const ACTLBL_MOVE_UP_DOWN: &str = "MoveUpDown";
const ACTLBL_MOVE_LEFT_RIGHT: &str = "MoveLeftRight";
const ACTLBL_MOVE_FORWARD_BACKWARD: &str = "MoveForwardBackward";
const ACTLBL_LOOK_LEFT_RIGHT: &str = "LookLeftRight";
const ACTLBL_LOOK_UP_DOWN: &str = "LookUpDown";
const ACTLBL_LOOK_ROLL: &str = "LookRoll";
struct FixedTimestep {
max_tps: u32,
fixed_time: f32,
@ -93,15 +73,16 @@ async fn main() {
//let diffuse_texture = resman.request::<Texture>("assets/happy-tree.png").unwrap();
//let antique_camera_model = resman.request::<Model>("assets/AntiqueCamera.glb").unwrap();
//let cube_model = resman.request::<Model>("assets/cube-texture-bin.glb").unwrap();
/* let cube_gltf = resman.request::<Gltf>("assets/texture-sep/texture-sep.gltf").unwrap();
let crate_gltf = resman.request::<Gltf>("assets/crate/crate.gltf").unwrap();
let cube_gltf = resman.request::<Gltf>("assets/texture-sep/texture-sep.gltf").unwrap();
/*let crate_gltf = resman.request::<Gltf>("assets/crate/crate.gltf").unwrap();
let separate_gltf = resman.request::<Gltf>("assets/pos-testing/child-node-cubes.glb").unwrap(); */
//drop(resman);
/* let cube_mesh = &cube_gltf.data_ref()
cube_gltf.wait_recurse_dependencies_load();
let cube_mesh = &cube_gltf.data_ref()
.unwrap().meshes[0];
let crate_mesh = &crate_gltf.data_ref()
/* let crate_mesh = &crate_gltf.data_ref()
.unwrap().meshes[0];
let separate_scene = &separate_gltf.data_ref()
@ -119,21 +100,6 @@ async fn main() {
Transform::from_xyz(0.0, 0.0, 0.0),
));
/* world.spawn((
separate_scene.clone(),
Transform::from_xyz(0.0, -5.0, -10.0),
)); */
/* {
let cube_tran = Transform::from_xyz(-5.9026427, -1.8953488, -10.0);
//cube_tran.rotate_y(math::Angle::Degrees(180.0));
world.spawn((
cube_tran,
crate_mesh.clone(),
CubeFlag,
));
} */
{
let mut light_tran = Transform::from_xyz(1.5, 2.5, 0.0);
light_tran.scale = Vec3::new(0.5, 0.5, 0.5);
@ -141,39 +107,76 @@ async fn main() {
light_tran.rotate_y(math::Angle::Degrees(25.0));
world.spawn((
DirectionalLight {
color: Vec3::new(1.0, 1.0, 1.0),
ambient: 0.3,
diffuse: 1.0,
specular: 1.3,
enabled: true,
color: Vec3::ONE,
intensity: 0.35
//..Default::default()
},
light_tran,
//cube_mesh.clone(),
));
}
/* {
let mut light_tran = Transform::from_xyz(-3.5, 0.2, -4.5);
light_tran.scale = Vec3::new(0.5, 0.5, 0.5);
world.spawn((
SpotLight {
color: Vec3::new(1.0, 0.2, 0.2),
cutoff: math::Angle::Degrees(12.5),
outer_cutoff: math::Angle::Degrees(17.5),
constant: 1.0,
linear: 0.007,
quadratic: 0.0002,
ambient: 0.0,
diffuse: 7.0,
specular: 1.0,
},
Transform::from(light_tran),
cube_mesh.clone(),
));
}
{
world.spawn((
PointLight {
enabled: true,
color: Vec3::new(0.0, 0.0, 1.0),
intensity: 1.0,
range: 2.0,
..Default::default()
},
Transform::new(
//Vec3::new(-5.0, 1.0, -1.28),
Vec3::new(-5.0, 1.0, -0.0),
//Vec3::new(-10.0, 0.94, -0.28),
Quat::IDENTITY,
Vec3::new(0.25, 0.25, 0.25),
),
cube_mesh.clone(),
));
world.spawn((
PointLight {
enabled: true,
color: Vec3::new(0.0, 0.5, 1.0),
intensity: 1.0,
range: 1.0,
..Default::default()
},
Transform::new(
Vec3::new(-3.0, 0.2, -1.5),
//Vec3::new(-5.0, 1.0, -0.28),
//Vec3::new(-10.0, 0.94, -0.28),
Quat::IDENTITY,
Vec3::new(0.15, 0.15, 0.15),
),
cube_mesh.clone(),
));
world.spawn((
SpotLight {
enabled: true,
color: Vec3::new(1.0, 0.0, 0.0),
intensity: 1.0,
range: 1.5,
//cutoff: math::Angle::Degrees(45.0),
..Default::default()
},
Transform::new(
Vec3::new(0.0, 0.2, -1.5),
//Vec3::new(-5.0, 1.0, -0.28),
//Vec3::new(-10.0, 0.94, -0.28),
Quat::IDENTITY,
Vec3::new(0.15, 0.15, 0.15),
),
cube_mesh.clone(),
));
}
/* {
let mut light_tran = Transform::from_xyz(2.0, 2.5, -9.5);
light_tran.scale = Vec3::new(0.5, 0.5, 0.5);
world.spawn((
@ -218,54 +221,30 @@ async fn main() {
} */
let mut camera = CameraComponent::new_3d();
camera.transform.translation += math::Vec3::new(0.0, 0.0, 5.5);
// these values were taken by manually positioning the camera in the scene.
camera.transform = Transform::new(
Vec3::new(-10.0, 0.94, -0.28),
Quat::from_xyzw(0.03375484, -0.7116095, 0.0342693, 0.70092666),
Vec3::ONE
);
//camera.transform.translation += math::Vec3::new(0.0, 0.0, 5.5);
world.spawn(( camera, FreeFlyCamera::default() ));
Ok(())
};
#[allow(unused_variables)]
let fps_system = |world: &mut World| -> anyhow::Result<()> {
let mut counter = world.get_resource_mut::<fps_counter::FPSCounter>();
let camera_debug_plugin = move |game: &mut Game| {
let sys = |handler: Res<ActionHandler>, view: View<&mut CameraComponent>| -> anyhow::Result<()> {
if handler.was_action_just_pressed("Debug") {
for mut cam in view.into_iter() {
cam.debug = !cam.debug;
}
}
let fps = counter.tick();
Ok(())
};
println!("FPS: {fps}");
Ok(())
};
let _fps_plugin = move |game: &mut Game| {
let world = game.world_mut();
world.add_resource(fps_counter::FPSCounter::new());
};
let spin_system = |world: &mut World| -> anyhow::Result<()> {
const SPEED: f32 = 4.0;
let delta_time = **world.get_resource::<DeltaTime>();
for (mut transform, _) in world.view_iter::<(&mut Transform, &CubeFlag)>() {
let t = &mut transform;
t.rotate_y(math::Angle::Degrees(SPEED * delta_time));
}
for (mut transform, _s) in world.view_iter::<(&mut Transform, &mut SpotLight)>() {
let t = &mut transform;
t.rotate_x(math::Angle::Degrees(SPEED * delta_time));
}
Ok(())
};
let jiggle_plugin = move |game: &mut Game| {
game.world_mut().add_resource(TpsAccumulator(0.0));
let mut sys = BatchedSystem::new();
sys.with_criteria(FixedTimestep::new(45));
sys.with_system(spin_system.into_system());
//sys.with_system(fps_system);
//game.with_system("fixed", sys, &[]);
//fps_plugin(game);
game.with_system("camera_debug_trigger", sys, &[]);
};
let action_handler_plugin = |game: &mut Game| {
@ -278,6 +257,7 @@ async fn main() {
.add_action(ACTLBL_LOOK_LEFT_RIGHT, Action::new(ActionKind::Axis))
.add_action(ACTLBL_LOOK_UP_DOWN, Action::new(ActionKind::Axis))
.add_action(ACTLBL_LOOK_ROLL, Action::new(ActionKind::Axis))
.add_action("Debug", Action::new(ActionKind::Button))
.add_mapping(ActionMapping::builder(LayoutId::from(0), ActionMappingId::from(0))
.bind(ACTLBL_MOVE_FORWARD_BACKWARD, &[
@ -308,6 +288,9 @@ async fn main() {
ActionSource::Keyboard(KeyCode::E).into_binding_modifier(-1.0),
ActionSource::Keyboard(KeyCode::Q).into_binding_modifier(1.0),
])
.bind("Debug", &[
ActionSource::Keyboard(KeyCode::B).into_binding(),
])
.finish()
).finish();
@ -337,7 +320,7 @@ async fn main() {
.with_plugin(action_handler_plugin)
//.with_plugin(script_test_plugin)
//.with_plugin(fps_plugin)
.with_plugin(jiggle_plugin)
.with_plugin(camera_debug_plugin)
.with_plugin(FreeFlyCameraPlugin)
.run().await;
}

View File

@ -5,7 +5,7 @@
"commandLine": "",
"environment": [
],
"executable": "/media/data_drive/Development/Rust/lyra-test/engine/target/debug/testbed",
"executable": "/media/data_drive/Development/Rust/lyra-engine/target/debug/testbed",
"inject": false,
"numQueuedFrames": 1,
"options": {
@ -23,6 +23,6 @@
"verifyBufferAccess": false
},
"queuedFrameCap": 5,
"workingDir": "/media/data_drive/Development/Rust/lyra-test/engine/examples/testbed"
"workingDir": "/media/data_drive/Development/Rust/lyra-engine/examples/testbed"
}
}

View File

@ -350,6 +350,7 @@ impl Game {
// done by prefix, so it includes all lyra subpackages
.with_target("lyra", Level::DEBUG)
.with_target("wgpu", Level::WARN)
.with_target("winit", Level::DEBUG)
.with_default(Level::INFO))
.init();

View File

@ -93,11 +93,24 @@ impl<T: Button> InputButtons<T> {
let hash = Self::get_button_hash(&button);
match self.button_events.get(&hash) {
Some(button_event) => match button_event {
// this if statement should always be true, but just in case ;)
ButtonEvent::JustPressed(b) if button == *b => true,
_ => false,
},
None => false
}
}
/// Update any JustPressed events into Pressed events
///
/// This must be done so that a key does not stay as JustPressed between multiple ticks
pub fn update(&mut self) {
for bev in self.button_events.values_mut() {
match bev {
ButtonEvent::JustPressed(btn) => {
*bev = ButtonEvent::Pressed(btn.clone());
},
_ => {},
}
}
}
}

View File

@ -102,12 +102,15 @@ impl crate::ecs::system::System for InputSystem {
let queue = world.try_get_resource_mut::<EventQueue>()
.and_then(|q| q.read_events::<InputEvent>());
let mut e = world.get_resource_or_else(InputButtons::<winit::event::VirtualKeyCode>::new);
e.update();
drop(e);
if queue.is_none() {
return Ok(());
}
let mut events = queue.unwrap();
while let Some(event) = events.pop_front() {
self.process_event(world, &event);
}

View File

@ -38,16 +38,43 @@ impl Projection {
#[repr(C)]
#[derive(Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
pub struct CameraUniform {
pub view_proj: glam::Mat4,
// vec4 is used because of the uniforms 16 byte spacing requirement
pub view_pos: glam::Vec4,
/// The view matrix of the camera
pub view: glam::Mat4,
/// The inverse of the projection matrix of the camera
pub inverse_projection: glam::Mat4,
/// The view projection matrix
pub view_projection: glam::Mat4,
pub projection: glam::Mat4,
/// The position of the camera
pub position: glam::Vec3,
pub tile_debug: u32,
//_padding: [u8; 3],
}
impl Default for CameraUniform {
fn default() -> Self {
Self {
view_proj: glam::Mat4::IDENTITY,
view_pos: Default::default()
view: glam::Mat4::IDENTITY,
inverse_projection: glam::Mat4::IDENTITY,
view_projection: glam::Mat4::IDENTITY,
projection: glam::Mat4::IDENTITY,
position: Default::default(),
tile_debug: 0,
//_padding: 0,
}
}
}
impl CameraUniform {
pub fn new(view: glam::Mat4, inverse_projection: glam::Mat4, view_projection: glam::Mat4, projection: glam::Mat4, position: glam::Vec3) -> Self {
Self {
view,
inverse_projection,
view_projection,
projection,
position,
tile_debug: 0
}
}
}
@ -79,26 +106,38 @@ impl RenderCamera {
self.aspect = size.width as f32 / size.height as f32;
}
pub fn update_view_projection(&mut self, camera: &CameraComponent) -> &glam::Mat4 {
/// Calculates the view projection, and the view
///
/// Returns: A tuple with the view projection as the first element, and the
/// view matrix as the second.
pub fn calc_view_projection(&mut self, camera: &CameraComponent) -> CameraUniform {
let position = camera.transform.translation;
let forward = camera.transform.forward();
let up = camera.transform.up();
let view = glam::Mat4::look_to_rh(
position,
forward,
up
);
match camera.mode {
CameraProjectionMode::Perspective => {
let position = camera.transform.translation;
let forward = camera.transform.forward();
let up = camera.transform.up();
let view = glam::Mat4::look_to_rh(
position,
forward,
up
);
let proj = glam::Mat4::perspective_rh_gl(camera.fov.to_radians(), self.aspect, self.znear, self.zfar);
self.view_proj = OPENGL_TO_WGPU_MATRIX * proj * view;
&self.view_proj
//(&self.view_proj, view)
CameraUniform {
view,
inverse_projection: proj.inverse(),
view_projection: self.view_proj,
projection: proj,
position,
tile_debug: camera.debug as u32,
}
},
CameraProjectionMode::Orthographic => {
let position = camera.transform.translation;
let target = camera.transform.rotation * glam::Vec3::new(0.0, 0.0, -1.0);
let target = target.normalize();
@ -111,7 +150,15 @@ impl RenderCamera {
let proj = glam::Mat4::orthographic_rh_gl(-size_x, size_x, -size_y, size_y, self.znear, self.zfar);
self.view_proj = OPENGL_TO_WGPU_MATRIX * proj;
&self.view_proj
CameraUniform {
view,
inverse_projection: proj.inverse(),
view_projection: self.view_proj,
projection: proj,
position,
tile_debug: camera.debug as u32,
}
},
}
}

View File

@ -1,11 +1,18 @@
use lyra_ecs::Component;
#[derive(Default, Debug, Clone, Component)]
#[derive(Debug, Clone, Component)]
pub struct DirectionalLight {
//pub direction: glam::Quat,
pub enabled: bool,
pub color: glam::Vec3,
pub intensity: f32,
}
pub ambient: f32,
pub diffuse: f32,
pub specular: f32,
}
impl Default for DirectionalLight {
fn default() -> Self {
Self {
enabled: true,
color: glam::Vec3::new(1.0, 1.0, 1.0),
intensity: 1.0,
}
}
}

View File

@ -6,14 +6,14 @@ use lyra_ecs::{Entity, Tick, World, query::{Entities, TickOf}};
pub use point::*;
pub use spotlight::*;
use std::{collections::{VecDeque, HashMap}, marker::PhantomData};
use std::mem;
use std::{collections::{HashMap, VecDeque}, marker::PhantomData, mem};
use crate::math::Transform;
use self::directional::DirectionalLight;
use super::render_buffer::BindGroupPair;
const MAX_LIGHT_COUNT: usize = 16;
/// A struct that stores a list of lights in a wgpu::Buffer.
@ -101,20 +101,23 @@ impl<U: Default + bytemuck::Pod + bytemuck::Zeroable> LightBuffer<U> {
pub(crate) struct LightUniformBuffers {
pub buffer: wgpu::Buffer,
pub bindgroup_layout: wgpu::BindGroupLayout,
pub bindgroup: wgpu::BindGroup,
pub lights_uniform: LightsUniform,
pub point_lights: LightBuffer<PointLightUniform>,
pub spot_lights: LightBuffer<SpotLightUniform>,
pub bind_group_pair: BindGroupPair,
pub light_indexes: HashMap<Entity, u32>,
dead_indices: VecDeque<u32>,
pub current_light_idx: u32,
}
impl LightUniformBuffers {
pub fn new(device: &wgpu::Device) -> Self {
let limits = device.limits();
// TODO: ensure we dont write over this limit
let max_buffer_sizes = (limits.max_uniform_buffer_binding_size as u64) / 2;
let buffer = device.create_buffer(
&wgpu::BufferDescriptor {
label: Some("UBO_Lights"),
usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST,
size: mem::size_of::<LightsUniform>() as u64,
usage: wgpu::BufferUsages::STORAGE | wgpu::BufferUsages::COPY_DST,
size: max_buffer_sizes,
mapped_at_creation: false,
}
);
@ -123,14 +126,16 @@ impl LightUniformBuffers {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX | wgpu::ShaderStages::FRAGMENT,
visibility: wgpu::ShaderStages::FRAGMENT | wgpu::ShaderStages::COMPUTE,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
ty: wgpu::BufferBindingType::Storage {
read_only: true
},
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}
},
],
label: Some("BGL_Lights"),
});
@ -147,209 +152,181 @@ impl LightUniformBuffers {
size: None, // use the full buffer
}
)
}
},
],
label: Some("BG_Lights"),
});
let point_lights = LightBuffer::new(MAX_LIGHT_COUNT);
let spot_lights = LightBuffer::new(MAX_LIGHT_COUNT);
Self {
buffer,
bindgroup_layout,
bindgroup,
lights_uniform: LightsUniform::default(),
point_lights,
spot_lights,
bind_group_pair: BindGroupPair::new(bindgroup, bindgroup_layout),
light_indexes: Default::default(),
current_light_idx: 0,
dead_indices: VecDeque::new(),
}
}
/// Returns the index for the entity, and if this index is new
fn get_index_for(&mut self, missed: &mut HashMap<Entity, u32>, entity: Entity) -> (bool, u32) {
let idx = missed.remove(&entity)
.map(|v| (false, v))
.or_else(||
self.dead_indices.pop_front()
.map(|v| (true, v))
)
.unwrap_or_else(|| {
let t = self.current_light_idx;
self.current_light_idx += 1;
(true, t)
});
idx
}
pub fn update_lights(&mut self, queue: &wgpu::Queue, world_tick: Tick, world: &World) {
// used to detect what lights were removed
let mut missed_lights: HashMap<Entity, u32> = self.light_indexes.drain().collect();
for (entity, point_light, transform, light_epoch, transform_epoch)
in world.view_iter::<(Entities, &PointLight, &Transform, TickOf<PointLight>, TickOf<Transform>)>() {
if !self.point_lights.has_light(entity) || light_epoch == world_tick || transform_epoch == world_tick {
let uniform = PointLightUniform::from_bundle(&point_light, &transform);
self.point_lights.update_or_add(&mut self.lights_uniform.point_lights, entity, uniform);
//debug!("Updated point light");
let (new, idx) = self.get_index_for(&mut missed_lights, entity);
self.light_indexes.insert(entity, idx);
if new || light_epoch == world_tick || transform_epoch == world_tick {
let uniform = LightUniform::from_point_light_bundle(&point_light, &transform);
let offset = mem::size_of::<u32>() * 4 + mem::size_of::<LightUniform>() * idx as usize;
queue.write_buffer(&self.buffer, offset as _, bytemuck::cast_slice(&[uniform]));
}
}
for (entity, spot_light, transform, light_epoch, transform_epoch)
in world.view_iter::<(Entities, &SpotLight, &Transform, TickOf<SpotLight>, TickOf<Transform>)>() {
if !self.spot_lights.has_light(entity) || light_epoch == world_tick || transform_epoch == world_tick {
let uniform = SpotLightUniform::from_bundle(&spot_light, &transform);
self.spot_lights.update_or_add(&mut self.lights_uniform.spot_lights, entity, uniform);
//debug!("Updated spot light");
let (new, idx) = self.get_index_for(&mut missed_lights, entity);
self.light_indexes.insert(entity, idx);
if new || light_epoch == world_tick || transform_epoch == world_tick {
let uniform = LightUniform::from_spot_light_bundle(&spot_light, &transform);
let offset = mem::size_of::<u32>() * 4 + mem::size_of::<LightUniform>() * idx as usize;
queue.write_buffer(&self.buffer, offset as _, bytemuck::cast_slice(&[uniform]));
}
}
if let Some((dir_light, transform)) =
world.view_iter::<(&DirectionalLight, &Transform)>().next() {
for (entity, dir_light, transform, light_epoch, transform_epoch)
in world.view_iter::<(Entities, &DirectionalLight, &Transform, TickOf<DirectionalLight>, TickOf<Transform>)>() {
let uniform = DirectionalLightUniform::from_bundle(&dir_light, &transform);
self.lights_uniform.directional_light = uniform;
let (new, idx) = self.get_index_for(&mut missed_lights, entity);
self.light_indexes.insert(entity, idx);
if new || light_epoch == world_tick || transform_epoch == world_tick {
let uniform = LightUniform::from_directional_bundle(&dir_light, &transform);
let offset = mem::size_of::<u32>() * 4 + mem::size_of::<LightUniform>() * idx as usize;
queue.write_buffer(&self.buffer, offset as _, bytemuck::cast_slice(&[uniform]));
}
}
self.lights_uniform.point_light_count = self.point_lights.buffer_count as u32;
self.lights_uniform.spot_light_count = self.spot_lights.buffer_count as u32;
queue.write_buffer(&self.buffer, 0, bytemuck::cast_slice(&[self.lights_uniform]));
// anything left in missed_lights were lights that were deleted
let len = missed_lights.len();
self.dead_indices.reserve(len);
for (_, v) in missed_lights.drain() {
// write zeros in place of this now dead light, the enabled boolean will be set to false
let mut zeros = Vec::new();
zeros.resize(mem::size_of::<LightUniform>(), 0u32);
let offset = mem::size_of::<u32>() * 4 + mem::size_of::<LightUniform>() * v as usize;
queue.write_buffer(&self.buffer, offset as _, bytemuck::cast_slice(zeros.as_slice()));
self.dead_indices.push_back(v);
}
// update the amount of lights, then the array of lights
queue.write_buffer(&self.buffer, 0, bytemuck::cast_slice(&[self.current_light_idx as u32]));
}
}
#[repr(C)]
#[derive(Default, Debug, Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
pub struct LightsUniform {
point_lights: [PointLightUniform; MAX_LIGHT_COUNT],
point_light_count: u32,
_padding: [u32; 3],
spot_lights: [SpotLightUniform; MAX_LIGHT_COUNT],
spot_light_count: u32,
_padding2: [u32; 3],
directional_light: DirectionalLightUniform,
#[derive(Default, Debug, Copy, Clone)]
pub(crate) enum LightType {
#[default]
Directional = 0,
Point = 1,
Spotlight = 2,
}
#[repr(C)]
#[derive(Default, Debug, Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
pub struct PointLightUniform {
/// The position of the light
/// vec4 is used here for gpu padding, w is ignored in the shader
pub position: glam::Vec4,
/// The color of the light
/// vec4 is used here for gpu padding, w is ignored in the shader
pub color: glam::Vec4,
/// The intensity of the light
/// This works by just multiplying the result of the lighting
/// calculations by this scalar
pub intensity: f32,
/// The constant used in the quadratic attenuation calculation. Its best to leave this at 1.0
pub constant: f32,
/// The linear factor used in the quadratic attenuation calculation.
pub linear: f32,
/// The quadratic factor used in the quadratic attenuation calculation.
pub quadratic: f32,
pub ambient: f32,
pub diffuse: f32,
pub specular: f32,
pub _padding: u32,
}
impl PointLightUniform {
/// Create the PointLightUniform from an ECS bundle
pub fn from_bundle(light: &PointLight, transform: &Transform) -> Self {
Self {
position: glam::Vec4::new(transform.translation.x, transform.translation.y, transform.translation.z, 0.0),
//_padding: 0,
color: glam::Vec4::new(light.color.x, light.color.y, light.color.z, 0.0),
//_padding2: 0,
intensity: light.intensity,
constant: light.constant,
linear: light.linear,
quadratic: light.quadratic,
ambient: light.ambient,
diffuse: light.diffuse,
specular: light.specular,
_padding: 0,
}
}
}
#[repr(C)]
#[derive(Default, Debug, Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
pub struct DirectionalLightUniform {
/// The direction of the light
pub direction: glam::Vec3,
// gpu padding
pub _padding: u32,
/// The color of the light
pub color: glam::Vec3,
// no padding is needed here since ambient acts as the padding
// that would usually be needed for the vec3
/// The scalar of the ambient light created by this caster.
pub ambient: f32,
/// The scalar of the diffuse light created by this caster.
pub diffuse: f32,
/// The scalar of the specular reflections created by this caster.
pub specular: f32,
pub _padding2: [u32; 2],
}
impl DirectionalLightUniform {
/// Create the DirectionalLightUniform from an ECS bundle
pub fn from_bundle(light: &DirectionalLight, transform: &Transform) -> Self {
//transform.forward()
Self {
direction: transform.forward(),
_padding: 0,
color: light.color,
ambient: light.ambient,
diffuse: light.diffuse,
specular: light.specular,
_padding2: [0; 2],
}
}
}
#[repr(C)]
#[derive(Default, Debug, Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
pub(crate) struct SpotLightUniform {
pub(crate) struct LightUniform {
pub position: glam::Vec3,
pub _padding: u32,
pub light_type: u32, // enum LightType
pub direction: glam::Vec3,
pub _padding2: u32,
pub enabled: u32, // bool
pub color: glam::Vec3,
// no padding is needed here since cutoff acts as the padding
// no padding is needed here since range acts as the padding
// that would usually be needed for the vec3
pub cutoff: f32,
pub outer_cutoff: f32,
pub range: f32,
pub intensity: f32,
pub smoothness: f32,
/// The constant used in the quadratic attenuation calculation. Its best to leave this at 1.0
pub constant: f32,
/// The linear factor used in the quadratic attenuation calculation.
pub linear: f32,
/// The quadratic factor used in the quadratic attenuation calculation.
pub quadratic: f32,
pub ambient: f32,
pub diffuse: f32,
pub specular: f32,
pub _padding3: u32,
pub spot_cutoff_rad: f32,
pub spot_outer_cutoff_rad: f32,
}
impl SpotLightUniform {
/// Create the SpotLightUniform from an ECS bundle
pub fn from_bundle(light: &SpotLight, transform: &Transform) -> Self {
impl LightUniform {
pub fn from_point_light_bundle(light: &PointLight, transform: &Transform) -> Self {
Self {
light_type: LightType::Point as u32,
enabled: light.enabled as u32,
position: transform.translation,
_padding: 0,
direction: transform.forward(),
_padding2: 0,
color: light.color,
cutoff: light.cutoff.to_radians().cos(),
outer_cutoff: light.outer_cutoff.to_radians().cos(),
constant: light.constant,
linear: light.linear,
quadratic: light.quadratic,
ambient: light.ambient,
diffuse: light.diffuse,
specular: light.specular,
_padding3: 0,
range: light.range,
intensity: light.intensity,
smoothness: light.smoothness,
spot_cutoff_rad: 0.0,
spot_outer_cutoff_rad: 0.0,
}
}
}
pub fn from_directional_bundle(light: &DirectionalLight, transform: &Transform) -> Self {
Self {
light_type: LightType::Directional as u32,
enabled: light.enabled as u32,
position: transform.translation,
direction: transform.forward(),
color: light.color,
range: 0.0,
intensity: light.intensity,
smoothness: 0.0,
spot_cutoff_rad: 0.0,
spot_outer_cutoff_rad: 0.0,
}
}
// Create the SpotLightUniform from an ECS bundle
pub fn from_spot_light_bundle(light: &SpotLight, transform: &Transform) -> Self {
Self {
light_type: LightType::Spotlight as u32,
enabled: light.enabled as u32,
position: transform.translation,
direction: transform.forward(),
color: light.color,
range: light.range,
intensity: light.intensity,
smoothness: light.smoothness,
spot_cutoff_rad: light.cutoff.to_radians(),
spot_outer_cutoff_rad: light.outer_cutoff.to_radians(),
}
}
}

View File

@ -1,13 +1,22 @@
use lyra_ecs::Component;
#[derive(Default, Debug, Clone, Component)]
#[derive(Debug, Clone, Component)]
pub struct PointLight {
pub enabled: bool,
pub color: glam::Vec3,
pub range: f32,
pub intensity: f32,
pub constant: f32,
pub linear: f32,
pub quadratic: f32,
pub ambient: f32,
pub diffuse: f32,
pub specular: f32,
}
pub smoothness: f32,
}
impl Default for PointLight {
fn default() -> Self {
Self {
enabled: true,
color: glam::Vec3::new(1.0, 1.0, 1.0),
range: 1.0,
intensity: 1.0,
smoothness: 0.75,
}
}
}

View File

@ -4,15 +4,26 @@ use crate::math;
#[derive(Debug, Clone, Component)]
pub struct SpotLight {
pub enabled: bool,
pub color: glam::Vec3,
pub range: f32,
pub intensity: f32,
pub smoothness: f32,
pub cutoff: math::Angle,
pub outer_cutoff: math::Angle,
}
pub constant: f32,
pub linear: f32,
pub quadratic: f32,
impl Default for SpotLight {
fn default() -> Self {
Self {
enabled: true,
color: glam::Vec3::new(1.0, 1.0, 1.0),
range: 1.0,
intensity: 1.0,
smoothness: 0.75,
pub ambient: f32,
pub diffuse: f32,
pub specular: f32,
cutoff: math::Angle::Degrees(45.0),
outer_cutoff: math::Angle::Degrees(45.0),
}
}
}

View File

@ -0,0 +1,244 @@
use std::{borrow::Cow, mem, rc::Rc};
use glam::UVec2;
use wgpu::{util::DeviceExt, ComputePipeline};
use winit::dpi::PhysicalSize;
use super::{light::LightUniformBuffers, render_buffer::{BindGroupPair, BufferWrapper}, texture::RenderTexture};
#[allow(dead_code)]
pub(crate) struct LightIndicesGridBuffer {
index_counter_buffer: wgpu::Buffer,
indices_buffer: wgpu::Buffer,
grid_texture: wgpu::Texture,
grid_texture_view: wgpu::TextureView,
pub bg_pair: BindGroupPair,
}
pub(crate) struct LightCullCompute {
device: Rc<wgpu::Device>,
queue: Rc<wgpu::Queue>,
pipeline: ComputePipeline,
pub light_indices_grid: LightIndicesGridBuffer,
screen_size_buffer: BufferWrapper,
workgroup_size: glam::UVec2,
}
impl LightCullCompute {
/// Create the LightIndiciesGridBuffer object
fn create_grid(device: &wgpu::Device, workgroup_size: glam::UVec2) -> LightIndicesGridBuffer {
let mut contents = Vec::<u8>::new();
let contents_len = workgroup_size.x * workgroup_size.y * 200 * mem::size_of::<u32>() as u32;
contents.resize(contents_len as _, 0);
let light_indices_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("B_LightIndices"),
contents: &contents,
usage: wgpu::BufferUsages::STORAGE | wgpu::BufferUsages::COPY_DST,
});
let light_index_counter_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("B_LightIndexCounter"),
contents: &bytemuck::cast_slice(&[0]),
usage: wgpu::BufferUsages::STORAGE | wgpu::BufferUsages::COPY_DST,
});
let light_indices_bg_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::COMPUTE | wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Storage {
read_only: false
},
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::COMPUTE | wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::StorageTexture {
access: wgpu::StorageTextureAccess::ReadWrite,
format: wgpu::TextureFormat::Rg32Uint, // vec2<uint>
view_dimension: wgpu::TextureViewDimension::D2
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 2,
visibility: wgpu::ShaderStages::COMPUTE,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Storage {
read_only: false
},
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}
],
label: Some("BGL_LightIndicesGrid"),
});
let size = wgpu::Extent3d {
width: workgroup_size.x,
height: workgroup_size.y,
depth_or_array_layers: 1,
};
let grid_texture = device.create_texture(
&wgpu::TextureDescriptor {
label: Some("Tex_LightGrid"),
size,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Rg32Uint, // vec2<uint>
usage: wgpu::TextureUsages::STORAGE_BINDING,
view_formats: &[],
}
);
let grid_texture_view = grid_texture.create_view(&wgpu::TextureViewDescriptor {
label: Some("TexV_LightGrid"),
format: Some(wgpu::TextureFormat::Rg32Uint), // vec2<uint>
dimension: Some(wgpu::TextureViewDimension::D2),
aspect: wgpu::TextureAspect::All,
base_mip_level: 0,
mip_level_count: None,
base_array_layer: 0,
array_layer_count: None,
});
let light_indices_bg = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &light_indices_bg_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::Buffer(
wgpu::BufferBinding {
buffer: &light_indices_buffer,
offset: 0,
size: None, // the entire light buffer is needed
}
)
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::TextureView(&grid_texture_view)
},
wgpu::BindGroupEntry {
binding: 2,
resource: wgpu::BindingResource::Buffer(
wgpu::BufferBinding {
buffer: &light_index_counter_buffer,
offset: 0,
size: None, // the entire light buffer is needed
}
)
},
],
label: Some("BG_LightIndicesGrid"),
});
LightIndicesGridBuffer {
index_counter_buffer: light_index_counter_buffer,
indices_buffer: light_indices_buffer,
grid_texture,
grid_texture_view,
bg_pair: BindGroupPair::new(light_indices_bg, light_indices_bg_layout),
}
}
pub fn new(device: Rc<wgpu::Device>, queue: Rc<wgpu::Queue>, screen_size: PhysicalSize<u32>, lights_buffers: &LightUniformBuffers, camera_buffers: &BufferWrapper, depth_texture: &mut RenderTexture) -> Self {
let screen_size_buffer = BufferWrapper::builder()
.buffer_usage(wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST)
.label_prefix("ScreenSize")
.visibility(wgpu::ShaderStages::COMPUTE)
.buffer_dynamic_offset(false)
.contents(&[UVec2::new(screen_size.width, screen_size.height)])
.finish(&device);
let shader_src = include_str!("shaders/light_cull.comp.wgsl");
let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: Some("LightCullCompute"),
source: wgpu::ShaderSource::Wgsl(Cow::Borrowed(shader_src)),
});
let workgroup_size = glam::UVec2::new((screen_size.width as f32 / 16.0).ceil() as u32,
(screen_size.height as f32 / 16.0).ceil() as u32);
let light_grid = Self::create_grid(&device, workgroup_size);
let depth_tex_pair = depth_texture.create_bind_group(&device);
let layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("PipeLay_LightCull"),
bind_group_layouts: &[
&depth_tex_pair.layout,
&camera_buffers.bindgroup_layout().unwrap(),
&lights_buffers.bind_group_pair.layout,
&light_grid.bg_pair.layout,
screen_size_buffer.bindgroup_layout().unwrap(),
],
push_constant_ranges: &[],
});
let pipeline = device.create_compute_pipeline(&wgpu::ComputePipelineDescriptor {
label: Some("Pipe_LightCull"),
layout: Some(&layout),
module: &shader,
entry_point: "cs_main",
});
Self {
device,
queue,
pipeline,
light_indices_grid: light_grid,
screen_size_buffer,
workgroup_size,
}
}
pub fn update_screen_size(&mut self, size: PhysicalSize<u32>) {
self.screen_size_buffer.write_buffer(&self.queue, 0,
&[UVec2::new(size.width, size.height)]);
self.workgroup_size = glam::UVec2::new((size.width as f32 / 16.0).ceil() as u32,
(size.height as f32 / 16.0).ceil() as u32);
// I hate that the entire bind group is recreated on a resize but its the only way :(
self.light_indices_grid = Self::create_grid(&self.device, self.workgroup_size);
}
pub fn compute(&mut self, camera_buffers: &BufferWrapper, lights_buffers: &LightUniformBuffers, depth_texture: &RenderTexture) {
let mut encoder = self.device.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("LightCullCompute"),
});
{
let mut pass = encoder.begin_compute_pass(&wgpu::ComputePassDescriptor {
label: Some("Pass_LightCull"),
});
pass.set_pipeline(&self.pipeline);
pass.set_bind_group(0, depth_texture.bind_group(), &[]);
pass.set_bind_group(1, &camera_buffers.bindgroup(), &[]);
pass.set_bind_group(2, &lights_buffers.bind_group_pair.bindgroup, &[]);
pass.set_bind_group(3, &self.light_indices_grid.bg_pair.bindgroup, &[]);
pass.set_bind_group(4, self.screen_size_buffer.bindgroup(), &[]);
pass.dispatch_workgroups(self.workgroup_size.x, self.workgroup_size.y, 1);
}
self.queue.submit(std::iter::once(encoder.finish()));
self.device.poll(wgpu::Maintain::Wait);
self.cleanup();
}
pub fn cleanup(&mut self) {
self.queue.write_buffer(&self.light_indices_grid.index_counter_buffer, 0, &bytemuck::cast_slice(&[0]));
}
}

View File

@ -1,4 +1,4 @@
use std::sync::Arc;
use std::rc::Rc;
use lyra_resource::{ResHandle, Texture};
@ -11,7 +11,7 @@ pub struct MaterialSpecular {
pub color_texture: Option<RenderTexture>,
}
fn texture_to_render(device: &wgpu::Device, queue: &wgpu::Queue, bg_layout: &Arc<wgpu::BindGroupLayout>, i: &Option<ResHandle<Texture>>) -> Option<RenderTexture> {
fn texture_to_render(device: &wgpu::Device, queue: &wgpu::Queue, bg_layout: &Rc<wgpu::BindGroupLayout>, i: &Option<ResHandle<Texture>>) -> Option<RenderTexture> {
if let Some(tex) = i {
RenderTexture::from_resource(device, queue, bg_layout.clone(), tex, None).ok()
} else {
@ -20,7 +20,7 @@ fn texture_to_render(device: &wgpu::Device, queue: &wgpu::Queue, bg_layout: &Arc
}
impl MaterialSpecular {
pub fn from_resource(device: &wgpu::Device, queue: &wgpu::Queue, bg_layout: Arc<wgpu::BindGroupLayout>, value: &lyra_resource::gltf::Specular) -> Self {
pub fn from_resource(device: &wgpu::Device, queue: &wgpu::Queue, bg_layout: Rc<wgpu::BindGroupLayout>, value: &lyra_resource::gltf::Specular) -> Self {
let tex = texture_to_render(device, queue, &bg_layout, &value.texture);
let color_tex = texture_to_render(device, queue, &bg_layout, &value.color_texture);
@ -45,7 +45,7 @@ pub struct Material {
}
impl Material {
pub fn from_resource(device: &wgpu::Device, queue: &wgpu::Queue, bg_layout: Arc<wgpu::BindGroupLayout>, value: &lyra_resource::gltf::Material) -> Self {
pub fn from_resource(device: &wgpu::Device, queue: &wgpu::Queue, bg_layout: Rc<wgpu::BindGroupLayout>, value: &lyra_resource::gltf::Material) -> Self {
let diffuse_texture = texture_to_render(device, queue, &bg_layout, &value.base_color_texture);
let specular = value.specular.as_ref().map(|s| MaterialSpecular::from_resource(device, queue, bg_layout.clone(), s));

View File

@ -11,4 +11,5 @@ pub mod material;
pub mod camera;
pub mod window;
pub mod transform_buffer_storage;
pub mod light;
pub mod light;
pub mod light_cull_compute;

View File

@ -1,4 +1,4 @@
use std::{sync::Arc, num::NonZeroU32};
use std::{num::NonZeroU32, rc::Rc};
use wgpu::util::DeviceExt;
@ -23,13 +23,13 @@ impl RenderBuffer {
pub struct BindGroupPair {
pub bindgroup: wgpu::BindGroup,
pub layout: Arc<wgpu::BindGroupLayout>,
pub layout: Rc<wgpu::BindGroupLayout>,
}
impl BindGroupPair {
pub fn new_from_layout(device: &wgpu::Device, layout: Arc<wgpu::BindGroupLayout>, entries: &[wgpu::BindGroupEntry<'_>]) -> Self {
pub fn create_bind_group(device: &wgpu::Device, layout: Rc<wgpu::BindGroupLayout>, entries: &[wgpu::BindGroupEntry<'_>]) -> Self {
let bindgroup = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: layout.as_ref(),
layout: &layout,
entries,
label: None,
});
@ -39,12 +39,19 @@ impl BindGroupPair {
layout,
}
}
pub fn new(bindgroup: wgpu::BindGroup, layout: wgpu::BindGroupLayout) -> Self {
Self {
bindgroup,
layout: Rc::new(layout),
}
}
}
pub struct BufferWrapper {
pub bindgroup_pair: Option<BindGroupPair>,
pub inner_buf: wgpu::Buffer,
pub len: usize,
pub len: Option<usize>,
}
impl BufferWrapper {
@ -54,7 +61,7 @@ impl BufferWrapper {
Self {
bindgroup_pair: bind_group,
inner_buf: buffer,
len: 0,
len: Some(0),
}
}
@ -64,15 +71,82 @@ impl BufferWrapper {
Self {
bindgroup_pair: bind_group,
inner_buf: buffer,
len: 0,
len: Some(0),
}
}
pub fn from_parts(bind_group: wgpu::BindGroup, bind_group_layout: wgpu::BindGroupLayout, buffer: wgpu::Buffer) -> Self {
Self {
bindgroup_pair: Some(BindGroupPair::new(bind_group, bind_group_layout)),
inner_buf: buffer,
len: None,
}
}
/// Creates a builder for a BufferWrapper
pub fn builder() -> BufferWrapperBuilder {
BufferWrapperBuilder::new()
}
/// Retrieve the layout of the bindgroup associated with this buffer.
///
/// Returns None if this buffer object was not provided a bindgroup.
pub fn bindgroup_layout(&self) -> Option<&wgpu::BindGroupLayout> {
self.bindgroup_pair.as_ref().map(|bg| &*bg.layout)
}
/// Queue's the data to be written to `buffer` starting at `offset`.
///
/// The write is not immediately submitted, and instead enqueued
/// internally to happen at the start of the next submit() call.
///
/// This method fails if data overruns the size of buffer starting at offset.
///
/// See [`wgpu::Queue::write_buffer`](https://docs.rs/wgpu/latest/wgpu/struct.Queue.html#method.write_buffer).
pub fn write_buffer<T>(&self, queue: &wgpu::Queue, offset: u64, data: &[T])
where
T: bytemuck::NoUninit
{
queue.write_buffer(&self.inner_buf, offset, bytemuck::cast_slice(data));
}
/// Sets the buffer's bind group to `index` in the `pass`.
///
/// The bind group layout in the active pipeline when any `draw()` function is called must
/// match the layout of this bind group.
///
/// See [`wgpu::RenderPass::set_bind_group`](https://docs.rs/wgpu/latest/wgpu/struct.RenderPass.html#method.set_bind_group).
pub fn render_pass_bind_at<'a, 'b>(
&'a self,
pass: &'b mut wgpu::RenderPass<'a>,
index: u32,
offsets: &[wgpu::DynamicOffset],
) {
let pair = self.bindgroup_pair.as_ref().expect(
"BufferWrapper is missing bindgroup pair! Cannot set bind group on RenderPass!",
);
pass.set_bind_group(index, &pair.bindgroup, offsets);
}
/// Returns the bindgroup of this buffer, panics if the buffer does not have a bindgroup.
pub fn bindgroup(&self) -> &wgpu::BindGroup {
&self.bindgroup_pair.as_ref().expect(
"BufferWrapper is missing bindgroup pair! Cannot set bind group on RenderPass!",
).bindgroup
}
}
/// Struct used for building a BufferWrapper
///
/// ```nobuild
/// let camera_buffer = BufferWrapper::builder()
/// .buffer_usage(wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST)
/// .contents(&[CameraUniform::default()])
/// .label_prefix("Camera")
/// .visibility(wgpu::ShaderStages::VERTEX | wgpu::ShaderStages::FRAGMENT)
/// .buffer_dynamic_offset(false)
/// .finish(&device);
/// ```
#[derive(Default)]
pub struct BufferWrapperBuilder {
buffer_usage: Option<wgpu::BufferUsages>,
@ -198,7 +272,7 @@ impl BufferWrapperBuilder {
],
label: self.format_label("BGL_").as_deref(),
});
let bg_layout = Arc::new(bg_layout);
//let bg_layout = Arc::new(bg_layout);
let bg = device.create_bind_group(&wgpu::BindGroupDescriptor {
@ -214,7 +288,7 @@ impl BufferWrapperBuilder {
BindGroupPair {
bindgroup: bg,
layout: bg_layout,
layout: Rc::new(bg_layout),
}
}
};
@ -222,7 +296,7 @@ impl BufferWrapperBuilder {
BufferWrapper {
bindgroup_pair: Some(bg_pair),
inner_buf: buffer,
len: self.count.unwrap_or_default() as usize,
len: Some(self.count.unwrap_or_default() as usize),
}
}
}

View File

@ -1,4 +1,5 @@
use std::collections::{HashMap, VecDeque, HashSet};
use std::rc::Rc;
use std::sync::Arc;
use std::borrow::Cow;
@ -24,6 +25,7 @@ use crate::scene::CameraComponent;
use super::camera::{RenderCamera, CameraUniform};
use super::desc_buf_lay::DescVertexBufferLayout;
use super::light::LightUniformBuffers;
use super::light_cull_compute::LightCullCompute;
use super::material::Material;
use super::render_buffer::BufferWrapper;
use super::texture::RenderTexture;
@ -45,13 +47,19 @@ pub trait Renderer {
fn add_render_pipeline(&mut self, shader_id: u64, pipeline: Arc<FullRenderPipeline>);
}
pub trait RenderPass {
fn prepare(&mut self, main_world: &mut World);
fn render(&mut self, encoder: &mut wgpu::CommandEncoder) -> Result<(), wgpu::SurfaceError>;
fn on_resize(&mut self, new_size: winit::dpi::PhysicalSize<u32>);
}
struct MeshBufferStorage {
buffer_vertex: BufferStorage,
buffer_indices: Option<(wgpu::IndexFormat, BufferStorage)>,
//#[allow(dead_code)]
//render_texture: Option<RenderTexture>,
material: Option<Material>,
material: Option<Rc<Material>>,
// The index of the transform for this entity.
// The tuple is structured like this: (transform index, index of transform inside the buffer)
@ -68,8 +76,8 @@ pub struct CachedTransform {
pub struct BasicRenderer {
pub surface: wgpu::Surface,
pub device: wgpu::Device,
pub queue: wgpu::Queue,
pub device: Rc<wgpu::Device>, // device does not need to be mutable, no need for refcell
pub queue: Rc<wgpu::Queue>,
pub config: wgpu::SurfaceConfiguration,
pub size: winit::dpi::PhysicalSize<u32>,
pub window: Arc<Window>,
@ -80,6 +88,7 @@ pub struct BasicRenderer {
pub render_jobs: VecDeque<RenderJob>,
mesh_buffers: HashMap<uuid::Uuid, MeshBufferStorage>, // TODO: clean up left over buffers from deleted entities/components
material_buffers: HashMap<uuid::Uuid, Rc<Material>>,
entity_meshes: HashMap<Entity, uuid::Uuid>,
entity_last_transforms: HashMap<Entity, CachedTransform>,
@ -88,16 +97,18 @@ pub struct BasicRenderer {
render_limits: Limits,
inuse_camera: RenderCamera,
camera_buffer: wgpu::Buffer,
camera_bind_group: wgpu::BindGroup,
camera_buffer: BufferWrapper,
//camera_bind_group: wgpu::BindGroup,
bgl_texture: Arc<BindGroupLayout>,
bgl_texture: Rc<BindGroupLayout>,
default_texture: RenderTexture,
depth_buffer_texture: RenderTexture,
material_buffer: BufferWrapper,
light_buffers: LightUniformBuffers,
light_cull_compute: LightCullCompute,
}
impl BasicRenderer {
@ -123,7 +134,7 @@ impl BasicRenderer {
let (device, queue) = adapter.request_device(
&wgpu::DeviceDescriptor {
features: wgpu::Features::empty(),
features: wgpu::Features::TEXTURE_ADAPTER_SPECIFIC_FORMAT_FEATURES,
// WebGL does not support all wgpu features.
// Not sure if the engine will ever completely support WASM,
// but its here just in case
@ -143,10 +154,7 @@ impl BasicRenderer {
let render_limits = device.limits();
let surface_caps = surface.get_capabilities(&adapter);
let present_mode = surface_caps.present_modes[0]; /* match surface_caps.present_modes.contains(&wgpu::PresentMode::Immediate) {
true => wgpu::PresentMode::Immediate,
false => surface_caps.present_modes[0]
}; */
let present_mode = surface_caps.present_modes[0];
debug!("present mode: {:?}", present_mode);
@ -165,7 +173,7 @@ impl BasicRenderer {
};
surface.configure(&device, &config);
let bgl_texture = Arc::new(RenderTexture::create_layout(&device));
let bgl_texture = Rc::new(RenderTexture::create_layout(&device));
let shader_src = include_str!("shaders/base.wgsl");
let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor {
@ -174,43 +182,15 @@ impl BasicRenderer {
});
let transform_buffers = TransformBuffers::new(&device);
let camera_buffer = BufferWrapper::builder()
.buffer_usage(wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST)
.contents(&[CameraUniform::default()])
.label_prefix("Camera")
.visibility(wgpu::ShaderStages::VERTEX | wgpu::ShaderStages::FRAGMENT | wgpu::ShaderStages::COMPUTE)
.buffer_dynamic_offset(false)
.finish(&device);
let camera_buffer = device.create_buffer_init(
&wgpu::util::BufferInitDescriptor {
label: Some("Camera Buffer"),
contents: bytemuck::cast_slice(&[CameraUniform::default()]),
usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST,
}
);
let camera_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX | wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}
],
label: Some("camera_bind_group_layout"),
});
let camera_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &camera_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: camera_buffer.as_entire_binding(),
}
],
label: Some("camera_bind_group"),
});
let depth_texture = RenderTexture::create_depth_texture(&device, &config, "Depth Buffer");
let mut depth_texture = RenderTexture::create_depth_texture(&device, &config, "Tex_Depth");
// load the default texture
let bytes = include_bytes!("default_texture.png");
@ -222,9 +202,12 @@ impl BasicRenderer {
.buffer_usage(wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST)
.visibility(wgpu::ShaderStages::FRAGMENT)
.contents(&[MaterialUniform::default()])
//.size(mem::size_of::<MaterialUniform>())
.finish(&device);
let device = Rc::new(device);
let queue = Rc::new(queue);
let light_cull_compute = LightCullCompute::new(device.clone(), queue.clone(), size, &light_uniform_buffers, &camera_buffer, &mut depth_texture);
let mut s = Self {
window,
surface,
@ -241,6 +224,7 @@ impl BasicRenderer {
render_pipelines: HashMap::new(),
render_jobs: VecDeque::new(),
mesh_buffers: HashMap::new(),
material_buffers: HashMap::new(),
entity_meshes: HashMap::new(),
render_limits,
@ -248,7 +232,6 @@ impl BasicRenderer {
inuse_camera: RenderCamera::new(size),
camera_buffer,
camera_bind_group,
bgl_texture,
default_texture,
@ -257,15 +240,19 @@ impl BasicRenderer {
light_buffers: light_uniform_buffers,
material_buffer: mat_buffer,
light_cull_compute,
};
// create the default pipelines
let mut pipelines = HashMap::new();
pipelines.insert(0, Arc::new(FullRenderPipeline::new(&s.device, &s.config, &shader,
vec![super::vertex::Vertex::desc(),],
vec![&s.bgl_texture, &s.transform_buffers.bindgroup_layout, &camera_bind_group_layout,
&s.light_buffers.bindgroup_layout, &s.material_buffer.bindgroup_pair.as_ref().unwrap().layout,
&s.bgl_texture])));
vec![&s.bgl_texture, &s.transform_buffers.bindgroup_layout,
s.camera_buffer.bindgroup_layout().unwrap(),
&s.light_buffers.bind_group_pair.layout, &s.material_buffer.bindgroup_pair.as_ref().unwrap().layout,
&s.bgl_texture,
&s.light_cull_compute.light_indices_grid.bg_pair.layout,
])));
s.render_pipelines = pipelines;
s
@ -364,18 +351,24 @@ impl BasicRenderer {
let (vertex_buffer, buffer_indices) = self.create_vertex_index_buffers(mesh);
let material = mesh.material.as_ref()
.expect("Material resource not loaded yet")
.data_ref()
.expect("Material resource not loaded yet");
let material_ref = material.data_ref()
.unwrap();
let material = Material::from_resource(&self.device, &self.queue, self.bgl_texture.clone(), &material);
let uni = MaterialUniform::from(&material);
let material = self.material_buffers.entry(material.uuid())
.or_insert_with(|| {
debug!(uuid=material.uuid().to_string(), "Sending material to gpu");
Rc::new(Material::from_resource(&self.device, &self.queue, self.bgl_texture.clone(), &material_ref))
});
// TODO: support material uniforms from multiple uniforms
let uni = MaterialUniform::from(&**material);
self.queue.write_buffer(&self.material_buffer.inner_buf, 0, bytemuck::bytes_of(&uni));
debug!("Wrote material to buffer");
MeshBufferStorage {
buffer_vertex: vertex_buffer,
buffer_indices,
material: Some(material),
material: Some(material.clone()),
}
}
@ -511,13 +504,10 @@ impl Renderer for BasicRenderer {
}
if let Some(camera) = main_world.view_iter::<&mut CameraComponent>().next() {
let view_proj = self.inuse_camera.update_view_projection(&camera);
let pos = camera.transform.translation;
let uniform = CameraUniform {
view_proj: *view_proj,
view_pos: glam::Vec4::new(pos.x, pos.y, pos.z, 0.0),
};
self.queue.write_buffer(&self.camera_buffer, 0, bytemuck::cast_slice(&[uniform]));
let uniform = self.inuse_camera.calc_view_projection(&camera);
//let pos = camera.transform.translation;
//let uniform = CameraUniform::new(view_mat, *view_proj, pos);
self.camera_buffer.write_buffer(&self.queue, 0, &[uniform]);
} else {
warn!("Missing camera!");
}
@ -529,6 +519,8 @@ impl Renderer for BasicRenderer {
let output = self.surface.get_current_texture()?;
let view = output.texture.create_view(&wgpu::TextureViewDescriptor::default());
self.light_cull_compute.compute(&self.camera_buffer, &self.light_buffers, &self.depth_buffer_texture);
let mut encoder = self.device.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Basic Renderer's Encoder")
});
@ -588,10 +580,12 @@ impl Renderer for BasicRenderer {
let offset = TransformBuffers::index_offset(&self.render_limits, transform_indices) as u32;
render_pass.set_bind_group(1, bindgroup, &[ offset, offset, ]);
render_pass.set_bind_group(2, &self.camera_bind_group, &[]);
render_pass.set_bind_group(3, &self.light_buffers.bindgroup, &[]);
render_pass.set_bind_group(2, &self.camera_buffer.bindgroup(), &[]);
render_pass.set_bind_group(3, &self.light_buffers.bind_group_pair.bindgroup, &[]);
render_pass.set_bind_group(4, &self.material_buffer.bindgroup_pair.as_ref().unwrap().bindgroup, &[]);
render_pass.set_bind_group(6, &self.light_cull_compute.light_indices_grid.bg_pair.bindgroup, &[]);
// if this mesh uses indices, use them to draw the mesh
if let Some((idx_type, indices)) = buffers.buffer_indices.as_ref() {
let indices_len = indices.count() as u32;
@ -623,8 +617,15 @@ impl Renderer for BasicRenderer {
// tell other things of updated resize
self.surface.configure(&self.device, &self.config);
let create_bindgroup = self.depth_buffer_texture.bindgroup_pair.is_some();
self.depth_buffer_texture = RenderTexture::create_depth_texture(&self.device, &self.config, "Depth Buffer Texture");
if create_bindgroup {
self.depth_buffer_texture.create_bind_group(&self.device);
}
self.inuse_camera.update_aspect_ratio(self.size);
self.light_cull_compute.update_screen_size(new_size);
}
}

View File

@ -2,6 +2,12 @@
const max_light_count: u32 = 16u;
const LIGHT_TY_DIRECTIONAL = 0u;
const LIGHT_TY_POINT = 1u;
const LIGHT_TY_SPOT = 2u;
const ALPHA_CUTOFF = 0.1;
struct VertexInput {
@location(0) position: vec3<f32>,
@location(1) tex_coords: vec2<f32>,
@ -16,57 +22,33 @@ struct VertexOutput {
}
struct CameraUniform {
view_proj: mat4x4<f32>,
view_pos: vec4<f32>,
};
struct PointLight {
position: vec4<f32>,
color: vec4<f32>,
intensity: f32,
constant: f32,
linear: f32,
quadratic: f32,
ambient: f32,
diffuse: f32,
specular: f32,
};
struct DirectionalLight {
direction: vec3<f32>,
color: vec3<f32>,
ambient: f32,
diffuse: f32,
specular: f32,
};
struct SpotLight {
view: mat4x4<f32>,
inverse_projection: mat4x4<f32>,
view_projection: mat4x4<f32>,
projection: mat4x4<f32>,
position: vec3<f32>,
tile_debug: u32,
};
struct Light {
position: vec3<f32>,
light_ty: u32,
direction: vec3<f32>,
enabled: u32,
color: vec3<f32>,
cutoff: f32,
outer_cutoff: f32,
range: f32,
intensity: f32,
smoothness: f32,
constant: f32,
linear: f32,
quadratic: f32,
ambient: f32,
diffuse: f32,
specular: f32,
spot_cutoff: f32,
spot_outer_cutoff: f32,
};
struct Lights {
point_lights: array<PointLight, max_light_count>,
point_light_count: u32,
spot_lights: array<SpotLight, max_light_count>,
spot_light_count: u32,
directional_light: DirectionalLight,
}
light_count: u32,
data: array<Light>,
};
@group(1) @binding(0)
var<uniform> u_model_transform: mat4x4<f32>;
@ -77,7 +59,7 @@ var<uniform> u_model_normal_matrix: mat4x4<f32>;
var<uniform> u_camera: CameraUniform;
@group(3) @binding(0)
var<uniform> u_lights: Lights;
var<storage> u_lights: Lights;
@vertex
fn vs_main(
@ -86,7 +68,7 @@ fn vs_main(
var out: VertexOutput;
out.tex_coords = model.tex_coords;
out.clip_position = u_camera.view_proj * u_model_transform * vec4<f32>(model.position, 1.0);
out.clip_position = u_camera.view_projection * u_model_transform * vec4<f32>(model.position, 1.0);
// the normal mat is actually only a mat3x3, but there's a bug in wgpu: https://github.com/gfx-rs/wgpu-rs/issues/36
let normal_mat = mat3x3(u_model_normal_matrix[0].xyz, u_model_normal_matrix[1].xyz, u_model_normal_matrix[2].xyz);
@ -120,32 +102,96 @@ var t_specular: texture_2d<f32>;
@group(5) @binding(1)
var s_specular: sampler;
@group(6) @binding(0)
var<storage, read_write> u_light_indices: array<u32>;
@group(6) @binding(1)
var t_light_grid: texture_storage_2d<rg32uint, read_write>; // vec2<u32>
@fragment
fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
let object_color: vec4<f32> = textureSample(t_diffuse, s_diffuse, in.tex_coords);
/*let object_color: vec4<f32> = textureSample(t_diffuse, s_diffuse, in.tex_coords);
let specular_color: vec3<f32> = textureSample(t_specular, s_specular, in.tex_coords).xyz;
// this needs to be 0.0 for the math
//u_lights.directional_light.direction.w = 0.0;
var light_res = vec3<f32>(0.0);
var light_res = blinn_phong_dir_light(in.world_position, in.world_normal, u_lights.directional_light, u_material, specular_color);
for (var i = 0u; i < u_lights.light_count; i++) {
var light = u_lights.data[i];
for (var i = 0u; i < u_lights.point_light_count; i++) {
light_res += blinn_phong_point_light(in.world_position, in.world_normal, u_lights.point_lights[i], u_material, specular_color);
}
for (var i = 0u; i < u_lights.spot_light_count; i++) {
light_res += blinn_phong_spot_light(in.world_position, in.world_normal, u_lights.spot_lights[i], u_material, specular_color);
if (light.light_ty == LIGHT_TY_DIRECTIONAL) {
light_res += blinn_phong_dir_light(in.world_position, in.world_normal, light, u_material, specular_color);
} else if (light.light_ty == LIGHT_TY_POINT) {
light_res += blinn_phong_point_light(in.world_position, in.world_normal, light, u_material, specular_color);
} else if (light.light_ty == LIGHT_TY_SPOT) {
light_res += blinn_phong_spot_light(in.world_position, in.world_normal, light, u_material, specular_color);
}
}
let light_object_res = light_res * (object_color.xyz/* * u_material.diffuse.xyz*/);
return vec4<f32>(light_object_res, object_color.a);*/
if (u_camera.tile_debug == 1u) {
return debug_grid(in);
}
let object_color: vec4<f32> = textureSample(t_diffuse, s_diffuse, in.tex_coords);
let specular_color: vec3<f32> = textureSample(t_specular, s_specular, in.tex_coords).xyz;
var light_res = vec3<f32>(0.0);
if (object_color.a < ALPHA_CUTOFF) {
discard;
}
let tile_index = vec2<u32>(floor(in.clip_position.xy / 16.0));
let tile: vec2<u32> = textureLoad(t_light_grid, tile_index).xy;
let light_offset = tile.x;
let light_count = tile.y;
for (var i = 0u; i < light_count; i++) {
let light_index = u_light_indices[light_offset + i];
let light: Light = u_lights.data[light_index];
if (light.light_ty == LIGHT_TY_DIRECTIONAL) {
light_res += blinn_phong_dir_light(in.world_position, in.world_normal, light, u_material, specular_color);
} else if (light.light_ty == LIGHT_TY_POINT) {
light_res += blinn_phong_point_light(in.world_position, in.world_normal, light, u_material, specular_color);
} else if (light.light_ty == LIGHT_TY_SPOT) {
light_res += blinn_phong_spot_light(in.world_position, in.world_normal, light, u_material, specular_color);
}
}
let light_object_res = light_res * (object_color.xyz);
return vec4<f32>(light_object_res, object_color.a);
//return debug_grid(in);
}
fn blinn_phong_dir_light(world_pos: vec3<f32>, world_norm: vec3<f32>, dir_light: DirectionalLight, material: Material, specular_factor: vec3<f32>) -> vec3<f32> {
fn debug_grid(in: VertexOutput) -> vec4<f32> {
let tile_index_float: vec2<f32> = in.clip_position.xy / 16.0;
let tile_index = vec2<u32>(floor(tile_index_float));
let tile: vec2<u32> = textureLoad(t_light_grid, tile_index).xy;
// detect where the line grids would be at
let x = tile_index_float.x - trunc(tile_index_float.x);
let y = tile_index_float.y - trunc(tile_index_float.y);
let ta: bool = x < 0.05 || y < 0.05;
let tb: bool = x > 0.95 || y > 0.95;
let ratio = f32(tile.y) / f32(u_lights.light_count);
return vec4<f32>(ratio, ratio, ratio, 1.0);
/* if ( ta || tb ) {
return vec4<f32>(0.0, 0.0, 0.0, 1.0);
} else {
return vec4<f32>(f32(tile_index.x) / 50.0, f32(tile_index.y) / 38.0, 0.0, 1.0);
} */
}
fn blinn_phong_dir_light(world_pos: vec3<f32>, world_norm: vec3<f32>, dir_light: Light, material: Material, specular_factor: vec3<f32>) -> vec3<f32> {
let light_color = dir_light.color.xyz;
let camera_view_pos = u_camera.view_pos.xyz;
let camera_view_pos = u_camera.position;
//// Ambient light ////
var ambient_color = light_color * material.ambient.xyz * material.diffuse.xyz;
@ -165,17 +211,17 @@ fn blinn_phong_dir_light(world_pos: vec3<f32>, world_norm: vec3<f32>, dir_light:
var specular_color = specular_strength * (light_color * specular_factor);
//// end of specular ////
ambient_color *= dir_light.ambient;
/*ambient_color *= dir_light.ambient;
diffuse_color *= dir_light.diffuse;
specular_color *= dir_light.specular;
specular_color *= dir_light.specular;*/
return ambient_color + diffuse_color + specular_color;
return (ambient_color + diffuse_color + specular_color) * dir_light.intensity;
}
fn blinn_phong_point_light(world_pos: vec3<f32>, world_norm: vec3<f32>, point_light: PointLight, material: Material, specular_factor: vec3<f32>) -> vec3<f32> {
fn blinn_phong_point_light(world_pos: vec3<f32>, world_norm: vec3<f32>, point_light: Light, material: Material, specular_factor: vec3<f32>) -> vec3<f32> {
let light_color = point_light.color.xyz;
let light_pos = point_light.position.xyz;
let camera_view_pos = u_camera.view_pos.xyz;
let camera_view_pos = u_camera.position;
//// Ambient light ////
var ambient_color = light_color * material.ambient.xyz * material.diffuse.xyz;
@ -195,67 +241,64 @@ fn blinn_phong_point_light(world_pos: vec3<f32>, world_norm: vec3<f32>, point_li
var specular_color = specular_strength * (light_color * specular_factor);
//// end of specular ////
//// point light attenuation ////
let distance = length(light_pos - world_pos);
let attenuation = 1.0 / (point_light.constant + point_light.linear * distance +
point_light.quadratic * (distance * distance));
let attenuation = 1.0 - smoothstep(point_light.range * point_light.smoothness, point_light.range, distance);
//// end of point light attenuation ////
ambient_color *= point_light.ambient * attenuation;
diffuse_color *= point_light.diffuse * attenuation;
specular_color *= point_light.specular * attenuation;
ambient_color *= attenuation;
diffuse_color *= attenuation;
specular_color *= attenuation;
return (ambient_color + diffuse_color + specular_color) * point_light.intensity;
}
fn blinn_phong_spot_light(world_pos: vec3<f32>, world_norm: vec3<f32>, spot_light: SpotLight, material: Material, specular_factor: vec3<f32>) -> vec3<f32> {
let light_color = spot_light.color;//.xyz;
let light_pos = spot_light.position.xyz;
let camera_view_pos = u_camera.view_pos.xyz;
fn blinn_phong_spot_light(world_pos: vec3<f32>, world_norm: vec3<f32>, spot_light: Light, material: Material, specular_factor: vec3<f32>) -> vec3<f32> {
let light_color = spot_light.color;
let light_pos = spot_light.position;
let camera_view_pos = u_camera.position;
let light_dir = normalize(spot_light.position - world_pos);
var ambient_color = light_color * material.ambient.xyz * material.diffuse.xyz;
//// diffuse ////
//let light_dir = normalize(light_pos - world_pos);
let diffuse_strength = max(dot(world_norm, light_dir), 0.0);
var diffuse_color = light_color * (diffuse_strength * material.diffuse.xyz);
//// end of diffuse ////
//// specular ////
let view_dir = normalize(camera_view_pos - world_pos);
let half_dir = normalize(view_dir + light_dir);
let specular_strength = pow(max(dot(world_norm, half_dir), 0.0), material.shininess);
var specular_color = specular_strength * (light_color * specular_factor);
//// end of specular ////
//if (theta > spot_light.cutoff) {
var ambient_color = light_color * material.ambient.xyz * material.diffuse.xyz;
//// spot light soft edges ////
let min_cos = cos(spot_light.spot_cutoff);
let max_cos = lerp(min_cos, 1.0, 0.5);
let cos_angle = dot(spot_light.direction, -light_dir);
let cone = smoothstep(min_cos, max_cos, cos_angle);
//// end of spot light soft edges ////
//// diffuse ////
//let light_dir = normalize(light_pos - world_pos);
//// spot light attenuation ////
let distance = length(light_pos - world_pos);
let attenuation = calc_attenuation(spot_light, distance);
let diffuse_strength = max(dot(world_norm, light_dir), 0.0);
var diffuse_color = light_color * (diffuse_strength * material.diffuse.xyz);
//// end of diffuse ////
//// specular ////
let view_dir = normalize(camera_view_pos - world_pos);
let half_dir = normalize(view_dir + light_dir);
let specular_strength = pow(max(dot(world_norm, half_dir), 0.0), material.shininess);
var specular_color = specular_strength * (light_color * specular_factor);
//// end of specular ////
//// spot light soft edges ////
let theta = dot(light_dir, normalize(-spot_light.direction));
let epsilon = spot_light.cutoff - spot_light.outer_cutoff;
let intensity = clamp((theta - spot_light.outer_cutoff) / epsilon, 0.0, 1.0);
//diffuse_color *= intensity;
//specular_color *= intensity;
//// end of spot light soft edges ////
//// spot light attenuation ////
let distance = length(light_pos - world_pos);
let attenuation = 1.0 / (spot_light.constant + spot_light.linear * distance +
spot_light.quadratic * (distance * distance));
ambient_color *= attenuation * intensity * spot_light.ambient;
diffuse_color *= attenuation * intensity * spot_light.diffuse;
specular_color *= attenuation * intensity * spot_light.specular;
//// end of spot light attenuation ////
ambient_color *= attenuation * spot_light.intensity * cone;
diffuse_color *= attenuation * spot_light.intensity * cone;
specular_color *= attenuation * spot_light.intensity * cone;
//// end of spot light attenuation ////
return /*ambient_color +*/ diffuse_color + specular_color;
/*} else {
return vec3<f32>(0.0);
}*/
return /*ambient_color +*/ diffuse_color + specular_color;
}
fn calc_attenuation(light: Light, distance: f32) -> f32 {
return 1.0 - smoothstep(light.range * light.smoothness, light.range, distance);
}
fn lerp(start: f32, end: f32, alpha: f32) -> f32 {
return (start + (end - start) * alpha);
}

View File

@ -0,0 +1,329 @@
const BLOCK_SIZE: u32 = 16u;
const MAX_TILE_VISIBLE_LIGHTS: u32 = 1024u;
const LIGHT_TY_DIRECTIONAL = 0u;
const LIGHT_TY_POINT = 1u;
const LIGHT_TY_SPOT = 2u;
type vec2f = vec2<f32>;
type vec3f = vec3<f32>;
type vec4f = vec4<f32>;
struct CameraUniform {
view: mat4x4<f32>,
inverse_projection: mat4x4<f32>,
view_projection: mat4x4<f32>,
projection: mat4x4<f32>,
position: vec3f,
tile_debug: u32,
};
struct Light {
position: vec3f,
light_ty: u32,
direction: vec3f,
enabled: u32,
color: vec3f,
range: f32,
intensity: f32,
smoothness: f32,
spot_cutoff: f32,
spot_outer_cutoff: f32,
};
struct Lights {
light_count: u32,
data: array<Light>,
};
struct Cone {
tip: vec3f,
height: f32,
direction: vec3f,
radius: f32,
}
struct Plane {
normal: vec3f,
origin_distance: f32,
}
var<workgroup> wg_min_depth: atomic<u32>;
var<workgroup> wg_max_depth: atomic<u32>;
var<workgroup> wg_light_index_start: atomic<u32>;
var<workgroup> wg_frustum_planes: array<Plane, 6>;
// index list of visible light sources for this tile
var<workgroup> wg_visible_light_indices: array<u32, MAX_TILE_VISIBLE_LIGHTS>;
var<workgroup> wg_visible_light_count: atomic<u32>;
@group(0) @binding(0)
var t_depthmap: texture_depth_2d;
@group(0) @binding(1)
var s_depthmap: sampler;
@group(1) @binding(0)
var<uniform> u_camera: CameraUniform;
@group(2) @binding(0)
var<storage, read> u_lights: Lights;
@group(3) @binding(0)
var<storage, read_write> u_light_indices: array<u32>;
@group(3) @binding(1)
var t_light_grid: texture_storage_2d<rg32uint, read_write>;
@group(3) @binding(2)
var<storage, read_write> u_light_index_counter: atomic<u32>;
@group(4) @binding(0)
var<uniform> u_screen_size: vec2<u32>;
@compute
@workgroup_size(16, 16, 1)
fn cs_main(
@builtin(local_invocation_id) local_invocation_id: vec3<u32>,
@builtin(workgroup_id) workgroup_id: vec3<u32>,
@builtin(global_invocation_id) global_invocation_id: vec3<u32>,
@builtin(num_workgroups) num_workgroups: vec3<u32>,
@builtin(local_invocation_index) local_invocation_index: u32,
) {
// Initialize some shared global values for depth and light count
if (local_invocation_index == 0u) {
wg_min_depth = 0xFFFFFFFu;
wg_max_depth = 0u;
wg_visible_light_count = 0u;
}
workgroupBarrier();
// step 1: calculate the minimum and maximum depth values for this tile (using the depth map)
var tex_coord = vec2<u32>(global_invocation_id.xy);
var depth_float: f32 = textureLoad(t_depthmap, tex_coord, 0);
// bitcast the floating depth to u32 for atomic comparisons between threads
var depth_uint: u32 = bitcast<u32>(depth_float);
// step 2: find the minimum and max depth for this tile.
// atomically update the workgroup depth
atomicMin(&wg_min_depth, depth_uint);
atomicMax(&wg_max_depth, depth_uint);
workgroupBarrier();
// convert them back into floats
var min_depth: f32 = bitcast<f32>(wg_min_depth);
var max_depth: f32 = bitcast<f32>(wg_max_depth);
// Create the frustum planes that will be used for this time
if (local_invocation_index == 0u) {
// this algorithm is adapted from Google's filament:
// https://github.com/google/filament/blob/3644e7f80827f1cd2caef4a21e410a2243eb6e84/filament/src/Froxelizer.cpp#L402C57-L402C73
let tile_width_clip_space = f32(2u * BLOCK_SIZE) / f32(u_screen_size.x);
let tile_height_clip_space = f32(2u * BLOCK_SIZE) / f32(u_screen_size.y);
let tr_projection = transpose(u_camera.projection);
var planes: array<vec4f, 4>;
// left plane
{
let x = (f32(workgroup_id.x) * tile_width_clip_space) - 1.0;
let p = tr_projection * vec4f(-1.0, 0.0, 0.0, x);
planes[0] = -vec4f(normalize(p.xyz), 0.0);
}
// right plane
{
let x = (f32(workgroup_id.x + 1u) * tile_width_clip_space) - 1.0;
let p = tr_projection * vec4f(-1.0, 0.0, 0.0, x);
planes[1] = vec4f(normalize(p.xyz), 0.0);
}
// top plane
{
let y = (f32(workgroup_id.y) * tile_height_clip_space) - 1.0;
let p = tr_projection * vec4f(0.0, 1.0, 0.0, y);
planes[2] = -vec4f(normalize(p.xyz), 0.0);
}
// bottom plane
{
let y = (f32(workgroup_id.y + 1u) * tile_height_clip_space) - 1.0;
let p = tr_projection * vec4f(0.0, 1.0, 0.0, y);
planes[3] = vec4f(normalize(p.xyz), 0.0);
}
wg_frustum_planes[0] = Plane(planes[0].xyz, planes[0].w);
wg_frustum_planes[1] = Plane(planes[1].xyz, planes[1].w);
wg_frustum_planes[2] = Plane(planes[2].xyz, planes[2].w);
wg_frustum_planes[3] = Plane(planes[3].xyz, planes[3].w);
wg_frustum_planes[4] = Plane(vec3f(0.0, 0.0, -1.0), -min_depth);
wg_frustum_planes[5] = Plane(vec3f(0.0, 0.0, 1.0), -max_depth);
}
workgroupBarrier();
// Step 3: cull lights
// Process the lights detecting which ones to cull for this tile.
// Processes 256 lights simultaniously, each on a thread in the workgroup. Requires multiple
// iterations for more lights.
for (var i = local_invocation_index; i < u_lights.light_count; i += BLOCK_SIZE * BLOCK_SIZE) {
let light_index = i;
let light = u_lights.data[light_index];
if (light.enabled == 1u) {
let position_vs = (u_camera.view * vec4f(light.position, 1.0)).xyz;
if (light.light_ty == LIGHT_TY_DIRECTIONAL) {
add_light(light_index);
} else if (light.light_ty == LIGHT_TY_POINT
&& sphere_inside_frustrum(wg_frustum_planes, position_vs, light.range)) {
// TODO: add the light to the transparent geometry list
if (!sphere_inside_plane(position_vs, light.range, wg_frustum_planes[4])) {
add_light(light_index);
}
} else if (light.light_ty == LIGHT_TY_SPOT) {
let dir_vs = (u_camera.view * vec4f(light.direction, 1.0)).xyz;
let cone_radius = tan(light.spot_cutoff) * light.range;
let cone = Cone(position_vs, light.range, dir_vs, cone_radius);
if (cone_inside_frustum(cone, wg_frustum_planes)) {
// TODO: add the light to the transparent geometry list
add_light(light_index);
if (!cone_inside_plane(cone, wg_frustum_planes[4])) {
}
}
}
}
}
workgroupBarrier();
// Update the global memory with the visible light buffer.
// first update the light grid on the first thread
if (local_invocation_index == 0u) {
wg_light_index_start = atomicAdd(&u_light_index_counter, wg_visible_light_count);
textureStore(t_light_grid, workgroup_id.xy, vec4<u32>(wg_light_index_start, wg_visible_light_count, 0u, 1u));
// TODO: store light grid for transparent geometry
}
workgroupBarrier();
// now update the light index list on all threads.
for (var i = local_invocation_index; i < wg_visible_light_count; i += BLOCK_SIZE * BLOCK_SIZE) {
u_light_indices[wg_light_index_start + i] = wg_visible_light_indices[i];
}
}
/// Add a light to the visible light indicies list.
/// Returns a boolean indicating if the light was added.
fn add_light(light_index: u32) -> bool {
//var offset: u32 = wg_visible_light_count;
if (wg_visible_light_count < MAX_TILE_VISIBLE_LIGHTS) {
let offset = atomicAdd(&wg_visible_light_count, 1u);
wg_visible_light_indices[offset] = light_index;
return true;
}
return false;
}
fn sphere_inside_frustrum(frustum: array<Plane, 6>, sphere_origin: vec3f, radius: f32) -> bool {
// to be able to index this array with a non-const value,
// it must be defined as a var
var frustum_v = frustum;
// only check the sides of the frustum
for (var i = 0u; i < 4u; i++) {
if (sphere_inside_plane(sphere_origin, radius, frustum_v[i])) {
return false;
}
}
return true;
}
/// Check if the sphere is fully behind (i.e., inside the negative half-space of) a plane.
///
/// Source: Real-time collision detection, Christer Ericson (2005)
/// (https://www.3dgep.com/forward-plus/#light-culling-compute-shader)
fn sphere_inside_plane(sphere_origin: vec3f, radius: f32, plane: Plane) -> bool {
return dot(plane.normal, sphere_origin) - plane.origin_distance < -radius;
}
fn clip_to_view(clip: vec4f) -> vec4f {
// view space position
var view = u_camera.inverse_projection * clip;
// perspective projection
return view / view.w;
}
fn screen_to_view(screen: vec4f) -> vec4f {
// convert to normalized texture coordinates
let tex_coord = screen.xy / vec2<f32>(u_screen_size);
// convert to clip space
let clip = vec4f( vec2<f32>(tex_coord.x, 1.0 - tex_coord.y) * 2.0 - 1.0, screen.z, screen.w);
return clip_to_view(clip);
}
/// Compute a plane from 3 noncollinear points that form a triangle.
/// This equation assumes a right-handed (counter-clockwise winding order)
/// coordinate system to determine the direction of the plane normal.
fn compute_plane(p0: vec3f, p1: vec3f, p2: vec3f) -> Plane {
let v0 = p1 - p0;
let v2 = p2 - p0;
let normal = vec4f(normalize(cross(v0, v2)), 0.0);
// find the distance to the origin
let distance = dot(normal.xyz, p0);
return Plane(normal.xyz, distance);
}
fn point_inside_plane(point: vec3f, plane: Plane) -> bool {
return dot(plane.normal, point) + plane.origin_distance < 0.0;
}
fn point_intersect_plane(point: vec3f, plane: Plane) -> f32 {
return dot(plane.normal, point) + plane.origin_distance;
}
/// Check to see if a cone if fully behind (inside the negative halfspace of) a plane.
///
/// Source: Real-time collision detection, Christer Ericson (2005)
/// (https://www.3dgep.com/forward-plus/#light-culling-compute-shader)
fn cone_inside_plane(cone: Cone, plane: Plane) -> bool {
let dir = cone.direction;
let furthest_direction = cross(cross(plane.normal, dir), dir);
let furthest = cone.tip + dir * cone.height - furthest_direction * cone.radius;
// The cone is in the negative halfspace of the plane if the tip of the cone,
// and the farthest point on the end of the cone are inside the negative halfspace
// of the plane.
return point_inside_plane(cone.tip, plane) && point_inside_plane(furthest, plane);
}
fn cone_inside_frustum(cone: Cone, frustum: array<Plane, 6>) -> bool {
var frustum = frustum;
for (var i = 0u; i < 4u; i++) {
// TODO: better cone checking
if (sphere_inside_plane(cone.tip, cone.radius, frustum[i])) {
return false;
}
}
return true;
}

View File

@ -1,4 +1,4 @@
use std::sync::Arc;
use std::rc::Rc;
use image::GenericImageView;
use lyra_resource::{FilterMode, ResHandle, Texture, WrappingMode};
@ -44,7 +44,7 @@ impl RenderTexture {
})
}
fn create_bind_group_pair(device: &wgpu::Device, layout: Arc<wgpu::BindGroupLayout>, view: &wgpu::TextureView, sampler: &wgpu::Sampler) -> BindGroupPair {
fn create_bind_group_pair(device: &wgpu::Device, layout: Rc<wgpu::BindGroupLayout>, view: &wgpu::TextureView, sampler: &wgpu::Sampler) -> BindGroupPair {
let bg = device.create_bind_group(
&wgpu::BindGroupDescriptor {
layout: &layout,
@ -68,12 +68,12 @@ impl RenderTexture {
}
}
pub fn from_bytes(device: &wgpu::Device, queue: &wgpu::Queue, bg_layout: Arc<wgpu::BindGroupLayout>, bytes: &[u8], label: &str) -> anyhow::Result<Self> {
pub fn from_bytes(device: &wgpu::Device, queue: &wgpu::Queue, bg_layout: Rc<wgpu::BindGroupLayout>, bytes: &[u8], label: &str) -> anyhow::Result<Self> {
let img = image::load_from_memory(bytes)?;
Self::from_image(device, queue, bg_layout, &img, Some(label))
}
pub fn from_image(device: &wgpu::Device, queue: &wgpu::Queue, bg_layout: Arc<wgpu::BindGroupLayout>, img: &image::DynamicImage, label: Option<&str>) -> anyhow::Result<Self> {
pub fn from_image(device: &wgpu::Device, queue: &wgpu::Queue, bg_layout: Rc<wgpu::BindGroupLayout>, img: &image::DynamicImage, label: Option<&str>) -> anyhow::Result<Self> {
let rgba = img.to_rgba8();
let dimensions = img.dimensions();
@ -134,7 +134,7 @@ impl RenderTexture {
})
}
pub fn from_resource(device: &wgpu::Device, queue: &wgpu::Queue, bg_layout: Arc<wgpu::BindGroupLayout>, texture_res: &ResHandle<Texture>, label: Option<&str>) -> anyhow::Result<Self> {
pub fn from_resource(device: &wgpu::Device, queue: &wgpu::Queue, bg_layout: Rc<wgpu::BindGroupLayout>, texture_res: &ResHandle<Texture>, label: Option<&str>) -> anyhow::Result<Self> {
let texture_ref = texture_res.data_ref().unwrap();
let img = texture_ref.image.data_ref().unwrap();
@ -297,6 +297,66 @@ impl RenderTexture {
}
}
/// Creates a bind group for this texture and returns a borrow to the [`BindGroupPair`]
///
/// This does not create a new bind group if the texture already has one.
/// The view dimension will be the same as the texture dimension.
pub fn create_bind_group(&mut self, device: &wgpu::Device) -> &BindGroupPair {
if self.bindgroup_pair.is_some() {
// could not use an if-let here due to the borrow checker thinking
// that there was multiple borrows to self.bindgroup_pair
return self.bindgroup_pair.as_ref().unwrap();
}
let view_dim = match self.inner_texture.dimension() {
wgpu::TextureDimension::D1 => wgpu::TextureViewDimension::D1,
wgpu::TextureDimension::D2 => wgpu::TextureViewDimension::D2,
wgpu::TextureDimension::D3 => wgpu::TextureViewDimension::D3,
};
let layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::COMPUTE | wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
sample_type: wgpu::TextureSampleType::Depth,
view_dimension: view_dim,
multisampled: false
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::COMPUTE | wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Comparison),
count: None,
}
],
label: Some("BGL_Texture"),
});
let bg = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&self.view)
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&self.sampler)
}
],
label: Some("BG_Texture"),
});
let pair = BindGroupPair::new(bg, layout);
self.bindgroup_pair = Some(pair);
self.bindgroup_pair.as_ref().unwrap()
}
/// Returns the bind group stored inside the bind group pair.
///
/// Panics:

View File

@ -7,6 +7,7 @@ pub struct CameraComponent {
pub transform: Transform,
pub fov: Angle,
pub mode: CameraProjectionMode,
pub debug: bool,
}
impl Default for CameraComponent {
@ -15,6 +16,7 @@ impl Default for CameraComponent {
transform: Transform::default(),
fov: Angle::Degrees(45.0),
mode: CameraProjectionMode::Perspective,
debug: false,
}
}
}

View File

@ -1,28 +1,103 @@
use lyra_ecs::Component;
use glam::{EulerRot, Quat, Vec3};
use lyra_ecs::{query::{Res, View}, Component};
use crate::{math::{Angle, Transform}, render::camera::CameraProjectionMode};
use crate::{game::Game, input::ActionHandler, plugin::Plugin, DeltaTime};
use super::CameraComponent;
pub const ACTLBL_MOVE_UP_DOWN: &str = "MoveUpDown";
pub const ACTLBL_MOVE_LEFT_RIGHT: &str = "MoveLeftRight";
pub const ACTLBL_MOVE_FORWARD_BACKWARD: &str = "MoveForwardBackward";
pub const ACTLBL_LOOK_LEFT_RIGHT: &str = "LookLeftRight";
pub const ACTLBL_LOOK_UP_DOWN: &str = "LookUpDown";
pub const ACTLBL_LOOK_ROLL: &str = "LookRoll";
#[derive(Clone, Component)]
pub struct FreeFlyCamera {
pub transform: Transform,
pub fov: Angle,
pub mode: CameraProjectionMode,
pub speed: f32,
pub slow_speed_factor: f32,
pub look_speed: f32,
pub mouse_sensitivity: f32,
pub look_with_keys: bool,
}
impl Default for FreeFlyCamera {
fn default() -> Self {
Self::new()
Self {
speed: 4.0,
slow_speed_factor: 0.25,
look_speed: 0.5,
mouse_sensitivity: 0.9,
look_with_keys: false,
}
}
}
impl FreeFlyCamera {
pub fn new() -> Self {
#[allow(dead_code)]
pub fn new(speed: f32, slow_speed_factor: f32, look_speed: f32, mouse_sensitivity: f32, look_with_keys: bool) -> Self {
Self {
transform: Transform::default(),
fov: Angle::Degrees(45.0),
mode: CameraProjectionMode::Perspective,
speed: 1.5,
speed,
slow_speed_factor,
look_speed,
mouse_sensitivity,
look_with_keys,
}
}
}
}
pub fn free_fly_camera_controller(delta_time: Res<DeltaTime>, handler: Res<ActionHandler>, view: View<(&mut CameraComponent, &FreeFlyCamera)>) -> anyhow::Result<()> {
let delta_time = **delta_time;
for (mut cam, fly) in view.into_iter() {
let forward = cam.transform.forward();
let left = cam.transform.left();
let up = Vec3::Y;
let move_y = handler.get_axis_modifier(ACTLBL_MOVE_UP_DOWN).unwrap_or(0.0);
let move_x = handler.get_axis_modifier(ACTLBL_MOVE_LEFT_RIGHT).unwrap_or(0.0);
let move_z = handler.get_axis_modifier(ACTLBL_MOVE_FORWARD_BACKWARD).unwrap_or(0.0);
let mut velocity = Vec3::ZERO;
velocity += move_y * up;
velocity += move_x * left;
velocity += move_z * forward;
if velocity != Vec3::ZERO {
cam.transform.translation += velocity.normalize() * fly.speed * delta_time; // TODO: speeding up
}
let motion_x = handler.get_axis_modifier(ACTLBL_LOOK_LEFT_RIGHT).unwrap_or(0.0);
let motion_y = handler.get_axis_modifier(ACTLBL_LOOK_UP_DOWN).unwrap_or(0.0);
let motion_z = handler.get_axis_modifier(ACTLBL_LOOK_ROLL).unwrap_or(0.0);
let mut camera_rot = Vec3::ZERO;
camera_rot.y -= motion_x * fly.mouse_sensitivity;
camera_rot.x -= motion_y * fly.mouse_sensitivity;
camera_rot.z -= motion_z * fly.mouse_sensitivity;
if camera_rot != Vec3::ZERO {
let look_velocity = camera_rot * fly.look_speed * delta_time;
let (mut y, mut x, _) = cam.transform.rotation.to_euler(EulerRot::YXZ);
x += look_velocity.x;
y += look_velocity.y;
x = x.clamp(-1.54, 1.54);
// rotation is not commutative, keep this order to avoid unintended roll
cam.transform.rotation = Quat::from_axis_angle(Vec3::Y, y)
* Quat::from_axis_angle(Vec3::X, x);
}
}
Ok(())
}
/// A plugin that adds the free fly camera controller system to the world. It is expected that
/// there is a [`FreeFlyCamera`] in the world, if there isn't, the camera would not move.
pub struct FreeFlyCameraPlugin;
impl Plugin for FreeFlyCameraPlugin {
fn setup(&self, game: &mut Game) {
game.with_system("free_fly_camera_system", free_fly_camera_controller, &[]);
}
}

View File

@ -1,5 +1,4 @@
[toolchain]
channel = "nightly-2023-11-21"
#components = [ "rustfmt", "rustc-dev" ]
targets = [ "x86_64-unknown-linux-gnu" ]
#profile = "minimal"
channel = "nightly"
date = "2023-11-21"
targets = [ "x86_64-unknown-linux-gnu" ]

View File

@ -1,24 +1,33 @@
{ pkgs ? import <nixpkgs> { } }:
with pkgs;
mkShell rec {
nativeBuildInputs = [
pkg-config
openssl
wasm-pack
trunk
valgrind
heaptrack
mold
udev
lua5_4_compat
];
buildInputs = [
udev alsa-lib libGL gcc
vulkan-loader vulkan-headers vulkan-tools
xorg.libX11 xorg.libXcursor xorg.libXi xorg.libXrandr # To use the x11 feature
libxkbcommon wayland # To use the wayland feature
];
LD_LIBRARY_PATH = lib.makeLibraryPath buildInputs;
}
let
moz_overlay = import (builtins.fetchTarball https://github.com/mozilla/nixpkgs-mozilla/archive/master.tar.gz);
nixpkgs = import <nixpkgs> { overlays = [ moz_overlay ]; };
in
with nixpkgs;
stdenv.mkDerivation rec {
name = "lyra_engine_dev";
nativeBuildInputs = [
pkg-config
openssl
wasm-pack
trunk
valgrind
heaptrack
mold
udev
lua5_4_compat
((nixpkgs.rustChannelOf { rustToolchain = ./rust-toolchain.toml; }).rust.override {
extensions = [
"rust-src"
"rust-analysis"
];
})
];
buildInputs = [
udev alsa-lib libGL gcc
vulkan-loader vulkan-headers vulkan-tools
xorg.libX11 xorg.libXcursor xorg.libXi xorg.libXrandr # To use the x11 feature
libxkbcommon wayland # To use the wayland feature
];
LD_LIBRARY_PATH = lib.makeLibraryPath buildInputs;
}