Compare commits

...

2 Commits

31 changed files with 1345 additions and 558 deletions

View File

@ -1,5 +1,3 @@
--local win = require "scripts.window"
local is_window_setup = false
---Return the userdata's name from its metatable.
@ -19,7 +17,7 @@ end
function on_init()
local cube = world:request_res("../assets/cube-texture-embedded.gltf")
local cube = world:request_asset("../assets/cube-texture-embedded.gltf") --[[@as GltfHandle]]
print("Loaded textured cube (" .. udname(cube) .. ")")
cube:wait_until_loaded()
@ -45,7 +43,8 @@ function on_first()
is_window_setup = true
print("Window setup")
end
end, Window)
end, Window
)
end
end
@ -70,10 +69,13 @@ function on_update()
---@type number
local dt = world:resource(DeltaTime)
world:view(function (t)
world:view(
---@param t Transform
function (t)
t:translate(0, 0.15 * dt, 0)
return t
end, Transform)
end, Transform
)
end
--[[ function on_post_update()

View File

@ -358,66 +358,61 @@ impl ActionHandler {
/// Returns true if the action is pressed (or was just pressed).
///
/// This will panic if the action name does not correspond to an action.
pub fn is_action_pressed<L>(&self, action: L) -> bool
/// Returns `None` if the action was not found.
pub fn is_action_pressed<L>(&self, action: L) -> Option<bool>
where
L: ActionLabel
{
let action = self.actions.get(&action.label_hash())
.unwrap_or_else(|| panic!("Action {action:?} was not found"));
let action = self.actions.get(&action.label_hash())?;
matches!(action.state, ActionState::Pressed(_) | ActionState::JustPressed(_))
Some(matches!(action.state, ActionState::Pressed(_) | ActionState::JustPressed(_)))
}
/// Returns true if the action was just pressed.
///
/// This will panic if the action name does not correspond to an action.
pub fn was_action_just_pressed<L>(&self, action: L) -> bool
/// Returns `None` if the action was not found.
pub fn was_action_just_pressed<L>(&self, action: L) -> Option<bool>
where
L: ActionLabel
{
let action = self.actions.get(&action.label_hash())
.unwrap_or_else(|| panic!("Action {action:?} was not found"));
let action = self.actions.get(&action.label_hash())?;
matches!(action.state, ActionState::JustPressed(_))
Some(matches!(action.state, ActionState::JustPressed(_)))
}
/// Returns true if the action was just released.
///
/// This will panic if the action name does not correspond to an action.
pub fn was_action_just_released<L>(&self, action: L) -> bool
/// Returns `None` if the action was not found.
pub fn was_action_just_released<L>(&self, action: L) -> Option<bool>
where
L: ActionLabel
{
let action = self.actions.get(&action.label_hash())
.unwrap_or_else(|| panic!("Action {action:?} was not found"));
let action = self.actions.get(&action.label_hash())?;
matches!(action.state, ActionState::JustReleased)
Some(matches!(action.state, ActionState::JustReleased))
}
/// Returns an action's state.
///
/// This will panic if the action name does not correspond to an action.
pub fn get_action_state<L>(&self, action: L) -> ActionState
/// Returns `None` if the action was not found.
pub fn get_action_state<L>(&self, action: L) -> Option<ActionState>
where
L: ActionLabel
{
let action = self.actions.get(&action.label_hash())
.unwrap_or_else(|| panic!("Action {action:?} was not found"));
let action = self.actions.get(&action.label_hash())?;
action.state
Some(action.state)
}
/// Returns the action's modifier if it is pressed (or was just pressed).
/// Returns `None` if the action's state is not `ActionState::Pressed` or `ActionState::JustPressed`.
///
/// This will panic if the action name does not correspond to an action.
/// Returns `None` if the action's state is not `ActionState::Pressed`, `ActionState::JustPressed`,
/// or if the action was not found.
pub fn get_pressed_modifier<L>(&self, action: L) -> Option<f32>
where
L: ActionLabel
{
let action = self.actions.get(&action.label_hash())
.unwrap_or_else(|| panic!("Action {action:?} was not found"));
let action = self.actions.get(&action.label_hash())?;
match action.state {
ActionState::Pressed(v) | ActionState::JustPressed(v) => Some(v),
@ -426,15 +421,14 @@ impl ActionHandler {
}
/// Returns the action's modifier if it was just pressed.
/// Returns `None` if the action's state is not `ActionState::JustPressed`.
///
/// This will panic if the action name does not correspond to an action.
/// Returns `None` if the action's state is not `ActionState::JustPressed`,
/// or if the action was not found.
pub fn get_just_pressed_modifier<L>(&self, action: L) -> Option<f32>
where
L: ActionLabel
{
let action = self.actions.get(&action.label_hash())
.unwrap_or_else(|| panic!("Action {action:?} was not found"));
let action = self.actions.get(&action.label_hash())?;
match action.state {
ActionState::JustPressed(v) => Some(v),
@ -443,15 +437,14 @@ impl ActionHandler {
}
/// Returns the action's modifier if its an updated axis.
/// Returns `None` if the action's state is not `ActionState::Axis`.
///
/// This will panic if the action name does not correspond to an action.
/// Returns `None` if the action's state is not `ActionState::Axis`,
/// or if the action was not found.
pub fn get_axis_modifier<L>(&self, action: L) -> Option<f32>
where
L: ActionLabel
{
let action = self.actions.get(&action.label_hash())
.unwrap_or_else(|| panic!("Action {action:?} was not found"));
let action = self.actions.get(&action.label_hash())?;
match action.state {
ActionState::Axis(v) => Some(v),

View File

@ -28,10 +28,6 @@ impl Default for Transform {
// TODO: https://www.brainvoyager.com/bv/doc/UsersGuide/CoordsAndTransforms/SpatialTransformationMatrices.html
#[allow(dead_code)]
const ZERO_V3: Vec3 = Vec3::new(0.0, 0.0, 0.0);
const ONE_V3: Vec3 = Vec3::new(1.0, 1.0, 1.0);
#[allow(dead_code)]
impl Transform {
pub fn new(translation: Vec3, rotation: Quat, scale: Vec3) -> Self {
@ -43,33 +39,42 @@ impl Transform {
}
pub fn from_translation(translation: Vec3) -> Self {
Self::new(translation, Quat::IDENTITY, ONE_V3)
Self::new(translation, Quat::IDENTITY, Vec3::ONE)
}
pub fn from_xyz(x: f32, y: f32, z: f32) -> Self {
Self::new(Vec3::new(x, y, z), Quat::IDENTITY, ONE_V3)
Self::new(Vec3::new(x, y, z), Quat::IDENTITY, Vec3::ONE)
}
pub fn calculate_mat4(&self) -> Mat4 {
Mat4::from_scale_rotation_translation(self.scale, self.rotation, self.translation)
}
/// Get the forward vector of the Transform.
/// Returns a normalized vector pointing in the direction the Transform is facing.
///
/// This represents the front of the object can be used for movement, camera orientation, and
/// other directional calculations.
pub fn forward(&self) -> Vec3 {
(self.rotation * -Vec3::Z).normalize()
}
/// Get the left vector of the Transform.
/// Returns a normalized vector pointing to the left side of the Transform.
///
/// The vector is in local space. This represents the direction that is
/// perpendicular to the object's forward direction.
pub fn left(&self) -> Vec3 {
(self.rotation * Vec3::X).normalize()
}
/// Get the up vector of the Transform.
/// Returns a normalized vector that indicates the upward direction of the Transform.
///
/// This vector is commonly used to define an object's orientation and is essential for maintaining
/// consistent vertical alignment in 3D environments, such as for camera positioning and object alignment.
pub fn up(&self) -> Vec3 {
(self.rotation * Vec3::Y).normalize()
}
/// Rotate this transform using a Quaternion
/// Rotate this transform using a Quaternion.
pub fn rotate(&mut self, rotation: Quat) {
self.rotation = (rotation * self.rotation).normalize();
}
@ -110,7 +115,7 @@ impl Transform {
let mut res = *self;
res.translation = self.translation.lerp(rhs.translation, alpha);
// normalize rotation here to avoid panics
res.rotation = self.rotation.lerp(rhs.rotation.normalize(), alpha);
res.rotation = self.rotation.normalize().lerp(rhs.rotation.normalize(), alpha);
res.scale = self.scale.lerp(rhs.scale, alpha);
res
} else {

View File

@ -0,0 +1,9 @@
---@enum ActionState
ActionState = {
IDLE = "idle",
PRESSED = "pressed",
JUST_PRESSED = "just_pressed",
JUST_RELEASED = "just_released",
AXIS = "axis",
OTHER = "other",
}

View File

@ -0,0 +1,12 @@
---@enum HandleState
HandleState = {
LOADING = "loading",
READY = "ready",
ERROR = "error",
}
---@enum ActionKind
ActionKind = {
BUTTON = "button",
AXIS = "axis",
}

View File

@ -1,182 +0,0 @@
---@class Quat
---@field x number
---@field y number
---@field z number
---@field w number
Quat = { x = 0.0, y = 0.0, z = 0.0, w = 0.0 }
Quat.__index = Quat
Quat.__name = "Quat"
--- Constructs a new Quaternion from x, y, z, and w.
---@param x number
---@param y number
---@param z number
---@param w number
---@return Quat
function Quat:new(x, y, z, w)
local q = {}
setmetatable(q, Quat)
q.x = x
q.y = y
q.z = z
q.w = w
return q
end
Quat.IDENTITY = Quat:new(0, 0, 0, 1)
function Quat:clone()
return Quat:new(self.x, self.y, self.z, self.w)
end
--- Creates a quaternion from the angle, in radians, around the x axis.
--- @param rad number
--- @return Quat
function Quat:from_rotation_x(rad)
local sin = math.sin(rad * 0.5)
local cos = math.cos(rad * 0.5)
return Quat:new(sin, 0, 0, cos)
end
--- Creates a quaternion from the angle, in radians, around the y axis.
--- @param rad number
--- @return Quat
function Quat:from_rotation_y(rad)
local sin = math.sin(rad * 0.5)
local cos = math.cos(rad * 0.5)
return Quat:new(0, sin, 0, cos)
end
--- Creates a quaternion from the angle, in radians, around the z axis.
--- @param rad number
--- @return Quat
function Quat:from_rotation_z(rad)
local sin = math.sin(rad * 0.5)
local cos = math.cos(rad * 0.5)
return Quat:new(0, 0, sin, cos)
end
--- Computes the dot product of `self`.
---@param rhs Quat
---@return number
function Quat:dot(rhs)
return (self.x * rhs.x) + (self.y * rhs.y) + (self.z * rhs.z) + (self.w * rhs.w)
end
--- Computes the length of `self`.
---@return number
function Quat:length()
return math.sqrt(self:dot(self))
end
--- Compute the length of `self` squared.
---@return number
function Quat:length_squared()
return self:length() ^ 2
end
--- Normalizes `self` and returns the new Quat
---@return unknown
function Quat:normalize()
local length = self:length()
return self / length
end
--- Multiplies two Quaternions together. Keep in mind that Quaternion multiplication is NOT
--- commutative so the order in which you multiply the quaternions matters.
---@param rhs Quat
---@return Quat
function Quat:mult_quat(rhs)
local x1, y1, z1, w1 = self.x, self.y, self.z, self.w
local x2, y2, z2, w2 = rhs.x, rhs.y, rhs.z, rhs.w
local x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
local y = w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2
local z = w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2
local w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * x2
return Quat:new(x, y, z, w)
end
--- Multiplies `self` by a Vec3, returning the rotated Vec3
---@param vec Vec3
---@return Vec3
function Quat:mult_vec3(vec)
local vec_quat = Quat:new(vec.x, vec.y, vec.z, 0)
local quat = self:mult_quat(vec_quat)
return Vec3:new(quat.x, quat.y, quat.z)
end
--- Calculates the linear iterpolation between `self` and `rhs` based on the `alpha`.
--- When `alpha` is `0`, the result will be equal to `self`. When `s` is `1`, the result
--- will be equal to `rhs`
--- @param rhs Quat
--- @param alpha number
--- @return Quat
function Quat:lerp(rhs, alpha)
-- ensure alpha is [0, 1]
local alpha = math.max(0, math.min(1, alpha))
local x1, y1, z1, w1 = self.x, self.y, self.z, self.w
local x2, y2, z2, w2 = rhs.x, rhs.y, rhs.z, rhs.w
local x = (1 - alpha) * x1 + alpha * x2
local y = (1 - alpha) * y1 + alpha * y2
local z = (1 - alpha) * z1 + alpha * z2
local w = (1 - alpha) * w1 + alpha * w2
return Quat:new(x, y, z, w):normalize()
end
function Quat:__add(rhs)
return Quat:new(self.x + rhs.x, self.y + rhs.y, self.z + rhs.z, self.w + rhs.w)
end
function Quat:__sub(rhs)
return Quat:new(self.x - rhs.x, self.y - rhs.y, self.z - rhs.z, self.w - rhs.w)
end
function Quat:__mul(rhs)
if type(rhs) == "number" then
return Quat:new(self.x * rhs, self.y * rhs, self.z * rhs, self.w * rhs)
elseif type(rhs) == "table" then
local name = rhs.__name
if name == "Vec3" then
return self:mult_vec3(rhs)
elseif name == "Quat" then
return self:mult_quat(rhs)
else
assert(false, "Unknown usertype of rhs" .. name)
end
else
assert(false, "Unknown type of rhs" .. type(rhs))
end
end
function Quat:__div(rhs)
if type(rhs) == "number" then
return Quat:new(self.x / rhs, self.y / rhs, self.z / rhs, self.w / rhs)
else
assert(rhs.__name == "Quat", "Attempted to divide Quat by unknown type " .. rhs.__name)
return Quat:new(self.x / rhs.x, self.y / rhs.y, self.z / rhs.z, self.w / rhs.w)
end
end
function Quat:__eq(rhs)
return self.x == rhs.x and self.y == rhs.y and self.z == rhs.z and self.w == rhs.w
end
function Quat:__lt(rhs)
return self.x < rhs.x and self.y < rhs.y and self.z < rhs.z and self.w < rhs.w
end
function Quat:__le(rhs)
return self.x <= rhs.x and self.y <= rhs.y and self.z <= rhs.z and self.w <= rhs.w
end
function Quat:__tostring()
return "Quat(" .. self.x .. ", " .. self.y .. ", " .. self.z .. ", " .. self.w .. ")"
end

View File

@ -1,95 +0,0 @@
---@class Transform
---@field translation Vec3
---@field rotation Quat
---@field Scale Vec3
Transform = { translation = Vec3.ZERO, rotation = Quat.IDENTITY, scale = Vec3.ONE }
Transform.__index = Transform
Transform.__name = "Transform"
function Transform:new(translation, rotation, scale)
local t = {}
setmetatable(t, Transform)
t.translation = translation
t.rotation = rotation
t.scale = scale
return t
end
function Transform:clone()
return Transform:new(self.translation:clone(), self.rotation:clone(), self.scale:clone())
end
--- Creates a new Transform with the translation at the vec3
--- @param pos Vec3
function Transform:from_vec3(pos)
local t = Transform:clone() -- copy of default transform
t.translation = pos
return t
end
function Transform:from_xyz(x, y, z)
Transform:from_vec3(Vec3:new(x, y, z))
end
--- Calculates the forward vector of the Transform.
--- @return Vec3
function Transform:forward()
return (self.rotation * Vec3.NEG_Z):normalize()
end
--- Calculates the left vector of the Transform.
--- @return Vec3
function Transform:left()
return (self.rotation * Vec3.X):normalize()
end
--- Calculates the up vector of the Transform.
--- @return Vec3
function Transform:up()
return (self.rotation * Vec3.Y):normalize()
end
--- Rotates `self` using a Quaternion
--- @param quat Quat
function Transform:rotate(quat)
self.rotation = (quat * self.rotation):normalize()
end
--- Rotates `self` around the x-axis
--- @param rad number
function Transform:rotate_x(rad)
self:rotate(Quat:from_rotation_x(rad))
end
--- Rotates `self` around the y-axis
--- @param rad number
function Transform:rotate_y(rad)
self:rotate(Quat:from_rotation_y(rad))
end
--- Rotates `self` around the z-axis
--- @param rad number
function Transform:rotate_z(rad)
self:rotate(Quat:from_rotation_z(rad))
end
--- Calculates the linear iterpolation between `self` and `rhs` based on the `alpha`.
--- When `alpha` is `0`, the result will be equal to `self`. When `s` is `1`, the result
--- will be equal to `rhs`
--- @param rhs Transform
--- @param alpha number
--- @return Transform
function Transform:lerp(rhs, alpha)
local res = self:clone()
res.translation = self.translation:lerp(rhs.translation, alpha)
res.rotation = self.rotation:lerp(rhs.rotation, alpha)
res.scale = self.scale:lerp(rhs.scale, alpha)
return res
end
function Transform:__tostring()
return "Transform(pos=" .. tostring(self.translation) .. ", rot="
.. tostring(self.rotation) .. ", scale=" .. tostring(self.scale) .. ")"
end

View File

@ -1,187 +0,0 @@
---@class Vec3
---@field x number
---@field y number
---@field z number
Vec3 = { x = 0.0, y = 0.0, z = 0.0 }
Vec3.__index = Vec3
Vec3.__name = "Vec3"
--- Constructs a new vector
---@param x number
---@param y number
---@param z number
---@return Vec3
function Vec3:new(x, y, z)
local v = {}
setmetatable(v, Vec3)
v.x = x
v.y = y
v.z = z
return v
end
---Creates a copy of self
---@return Vec3
function Vec3:clone()
return Vec3:new(self.x, self.y, self.z)
end
--- Constructs a vector with all elements as parameter `x`.
---@param x number
---@return Vec3
function Vec3:all(x)
return Vec3:new(x, x, x)
end
--- A unit-length vector pointing alongside the positive X axis.
Vec3.X = Vec3:new(1, 0, 0)
--- A unit-length vector pointing alongside the positive Y axis.
Vec3.Y = Vec3:new(0, 1, 0)
--- A unit-length vector pointing alongside the positive Z axis.
Vec3.Z = Vec3:new(0, 0, 1)
--- A unit-length vector pointing alongside the negative X axis.
Vec3.NEG_X = Vec3:new(-1, 0, 0)
--- A unit-length vector pointing alongside the negative Y axis.
Vec3.NEG_Y = Vec3:new(0, -1, 0)
--- A unit-length vector pointing alongside the negative Z axis.
Vec3.NEG_Z = Vec3:new(0, 0, -1)
--- A vector of all zeros
Vec3.ZERO = Vec3:new(0, 0, 0)
--- A vector of all ones
Vec3.ONE = Vec3:new(1, 1, 1)
--- Computes the absolute value of `self`.
function Vec3:abs()
self.x = math.abs(self.x)
self.y = math.abs(self.y)
self.z = math.abs(self.z)
end
--- Computes the length of `self`.
---@return number
function Vec3:length()
return math.sqrt(self:dot(self))
end
---Moves `self` by the provided coordinates
---@param x number
---@param y number
---@param z number
function Vec3:move_by(x, y, z)
self.x = self.x + x
self.y = self.y + y
self.z = self.z + z
end
--- Computes the dot product of `self` and `rhs`.
---@param rhs Vec3
---@return number
function Vec3:dot(rhs)
assert(rhs.__name == "Vec3")
return (self.x * rhs.x) + (self.y * rhs.y) + (self.z * rhs.z)
end
--- Returns a vector that has the minimum value of each element of `self` and `rhs`
---@param rhs Vec3
---@return Vec3
function Vec3:min(rhs)
local x = math.min(self.x, rhs.x)
local y = math.min(self.y, rhs.y)
local z = math.min(self.z, rhs.z)
return Vec3:new(x, y, z)
end
--- Modifies `self` to be normalized to a length 1.
function Vec3:normalize()
local len_recip = 1.0 / self:length()
self.x = self.x * len_recip
self.y = self.y * len_recip
self.z = self.z * len_recip
end
--- Calculates the linear iterpolation between `self` and `rhs` based on the `alpha`.
--- When `alpha` is `0`, the result will be equal to `self`. When `s` is `1`, the result
--- will be equal to `rhs`
--- @param rhs Vec3
--- @param alpha number
--- @return Vec3
function Vec3:lerp(rhs, alpha)
-- ensure alpha is [0, 1]
local alpha = math.max(0, math.min(1, alpha))
local res = self:clone()
res = res + ((rhs - res) * alpha)
return res
end
function Vec3:__add(rhs)
if type(rhs) == "Vec3" then
return Vec3:new(self.x + rhs.x, self.y + rhs.y, self.z + rhs.z)
else
return Vec3:new(self.x + rhs, self.y + rhs, self.z + rhs)
end
end
function Vec3:__sub(rhs)
if type(rhs) == "Vec3" then
return Vec3:new(self.x - rhs.x, self.y - rhs.y, self.z - rhs.z)
else
return Vec3:new(self.x - rhs, self.y - rhs, self.z - rhs)
end
end
function Vec3:__mul(rhs)
if type(rhs) == "Vec3" then
return Vec3:new(self.x * rhs.x, self.y * rhs.y, self.z * rhs.z)
else
return Vec3:new(self.x * rhs, self.y * rhs, self.z * rhs)
end
end
function Vec3:__div(rhs)
if type(rhs) == "Vec3" then
return Vec3:new(self.x / rhs.x, self.y / rhs.y, self.z / rhs.z)
else
return Vec3:new(self.x / rhs, self.y / rhs, self.z / rhs)
end
end
function Vec3:__idiv(rhs)
if type(rhs) == "Vec3" then
return Vec3:new(self.x // rhs.x, self.y // rhs.y, self.z // rhs.z)
else
return Vec3:new(self.x // rhs, self.y // rhs, self.z // rhs)
end
end
function Vec3:__unm()
return Vec3:new(-self.x, -self.y, -self.z)
end
function Vec3:__pow(rhs)
if type(rhs) == "number" then
return Vec3:new(self.x ^ rhs, self.y ^ rhs, self.z ^ rhs)
end
end
function Vec3:__eq(rhs)
return self.x == rhs.x and self.y == rhs.y and self.z == rhs.z
end
function Vec3:__lt(rhs)
return self.x < rhs.x and self.y < rhs.y and self.z < rhs.z
end
function Vec3:__le(rhs)
return self.x <= rhs.x and self.y <= rhs.y and self.z <= rhs.z
end
function Vec3:__tostring()
return "Vec3(" .. self.x .. ", " .. self.y .. ", " .. self.z .. ")"
end

View File

@ -0,0 +1,23 @@
---@meta
---@class GltfHandle: Handle
---
---A handle to a GLTF asset.
GltfHandle = {
}
---Get a list of scenes in the GLTF file.
---
---@return SceneHandle[]
function GltfHandle:scenes() end
---Get a list of materials in the GLTF file.
---
---@return MaterialHandle[]
function GltfHandle:materials() end
---Get a list of meshes in the GLTF file.
---
---@return MeshHandle[]
function GltfHandle:meshes() end

View File

@ -0,0 +1,43 @@
---@meta
---@class Handle: userdata
---
---A handle to an asset. Assets are loaded asynchronously, so you cannot immediately
---use them after you request them from the World.
Handle = {
---The path the asset was loaded from.
---
---@type string
path = nil,
---The version of the resource.
---
---Increments every time a resource is loaded.
---
---@type number
version = nil,
---The unique id of the resource.
---
---This is not changed for the entire lifetime of the handle, it does not change
---when an asset is reloaded.
---
---@type string
uuid = nil,
---Current state of the asset handle.
---@type HandleState
state = nil,
}
---Returns true if the asset is watched for auto-reloading.
---
---@return boolean
function Handle:is_watched() end
---Returns true if the asset is loaded.
---@return boolean
function Handle:is_loaded() end
---Blocks execution until the asset and its dependencies are loaded.
function Handle:wait_until_loaded() end

View File

@ -0,0 +1,102 @@
---@meta
---@class MaterialHandle: Handle
---
---A handle to a material asset in a GLTF file.
MaterialHandle = {
---The unique id of the GPU shader.
---@type number?
shader_uuid = nil,
---The name of the material from GLTF.
---@type string?
name = nil,
---@type boolean
double_sided = nil,
---The RGBA base color of the model.
---
---If a texture is supplied with `base_color_texture`, this value will tint the
---texture. If a texture is not provided, this value would be the color of
---the Material.
---
---@type Vec4
base_color = nil,
---The metalness of the material
---
---From 0.0 (non-metal) to 1.0 (metal).
---
---@type number
metallic = nil,
---The roughness of the material
---
---From 0.0 (smooth) to 1.0 (rough)
---
---@type number
roughness = nil,
---The base color texture of the model.
---@type TextureHandle?
base_color_texture = nil,
---The metallic-roughness texture.
---
---The metalness values are sampled from the B channel. The roughness values are sampled from
---the G channel. These values are linear. If other channels are present (R or A), they are
---ignored for metallic-roughness calculations.
---@type TextureHandle?
metallic_roughness_texture = nil,
---A set of parameter values that are used to define the specular-glossiness material model
---from Physically-Based Rendering (PBR) methodology.
---GLTF extension: [KHR_materials_pbrSpecularGlossiness](https://kcoley.github.io/glTF/extensions/2.0/Khronos/KHR_materials_pbrSpecularGlossiness)
---@type TextureHandle?
pbr_glossiness = nil,
---The optional alpha cutoff value of the material.
---
---This will be used instead of the renderer's default.
---
---@type number?
alpha_cutoff = nil,
---The alpha rendering mode of the material.
---
---The material's alpha rendering
---mode enumeration specifying the interpretation of the alpha value of the main
---factor and texture.
---
---* In `Opaque` mode (default) the alpha value is ignored
--- and the rendered output is fully opaque.
---* In `Mask` mode, the rendered
--- output is either fully opaque or fully transparent depending on the alpha
--- value and the specified alpha cutoff value.
---* In `Blend` mode, the alpha value is used to composite the source and
--- destination areas and the rendered output is combined with the background
--- using the normal painting operation (i.e. the Porter and Duff over
--- operator).
---
---@type AlphaMode
alpha_mode = nil,
---@type Specular?
specular = nil,
}
---@enum AlphaMode
AlphaMode = {
OPAQUE = "opaque",
MASK = "mask",
BLEND = "blend",
}
---@class PbrGlossiness
---TODO: implement
PbrGlossiness = {}
---@class Specular
---TODO: implement
Specular = {}

View File

@ -0,0 +1,14 @@
---@meta
---@class MeshHandle: Handle
---
---A handle to a mesh in a GLTF file.
MeshHandle = {
---The material of the mesh
---@type MaterialHandle
material = nil,
}
---Get the indices in the mesh.
---@return number[]
function MeshHandle:indices() end

View File

@ -0,0 +1,9 @@
---@meta
---@class SceneHandle: Handle
---
---A handle to a scene asset in a GLTF file.
SceneHandle = {
}

View File

@ -0,0 +1,4 @@
---@meta
---@class TextureHandle
TextureHandle = {}

View File

@ -0,0 +1,125 @@
---@meta
---@class ActionHandler: userdata
ActionHandler = {}
--- Create a new `ActionHandler`.
---
--- ```lua
--- local handler = ActionHandler.new {
--- -- A list of layout IDs
--- layouts = { 0 },
--- actions = {
--- -- A list of action names and the `ActionKind`s.
--- -- Actions can be buttons or axes.
--- MoveForwardBackward = ActionKind.AXIS,
--- MoveLeftRight = ActionKind.AXIS,
--- MoveUpDown = ActionKind.AXIS,
--- LookLeftRight = ActionKind.AXIS,
--- LookUpDown = ActionKind.AXIS,
--- LookRoll = ActionKind.AXIS,
--- ObjectsMoveUpDown = ActionKind.AXIS
--- },
--- mappings = {
--- -- Each entry here is a mapping of actions for a layout.
--- -- This can be used so that when the current layout is changed,
--- -- the mapping would also change.
--- {
--- -- Specify the layout id that this mapping is for.
--- layout = 0,
--- binds = {
--- -- This is an Action bind. A bind is used to bind an input to an action.
--- -- These actions are defined above in "actions".
--- MoveForwardBackward = {
--- -- This is how you bind a button. In this case the button is a key.
--- -- "key" is the device the bind comes from, then after the colon is the
--- -- input name, in this case a specific key. We specify a modifier to the bind
--- -- after the equal sign.
--- "key:w=1.0",
--- "key:s=-1.0"
--- },
--- MoveLeftRight = {
--- "key:a=-1.0", "key:d=1.0"
--- },
--- MoveUpDown = {
--- "key:c=1.0", "key:z=-1.0"
--- },
--- LookLeftRight = {
--- "key:left=-1.0", "key:right=1.0",
--- -- Here is a bind to an axis.
--- -- We use "mouse", for the device the bind is from, then "axis" to specify
--- -- that we want to bind a specific axis, then we use the name of the axis,
--- -- in this case "x".
--- -- So this binds to the x axis of the mouse.
--- "mouse:axis:x"
--- },
--- LookUpDown = {
--- "key:up=-1.0", "key:down=1.0",
--- -- Here we bind to the y axis of the mouse.
--- "mouse:axis:y",
--- },
--- LookRoll = {
--- "key:e=-1.0", "key:q=1.0",
--- },
--- ObjectsMoveUpDown = {
--- "key:u=1.0", "key:j=-1.0"
--- }
--- }
--- }
--- }
--- }
---
--- -- Add the handler to the world so the host will process it.
--- world:add_resource(handler)
--- ```
---
---@param table table See above example to see the format of this table.
function ActionHandler.new(table) end
---Returns the action's modifier if its an updated axis.
---
---Returns `nil` if the action's state is not `ActionState::Axis`, or if the
---action was not found.
---@param action string
---@return number?
function ActionHandler:get_axis(action) end
---Returns true if the action is pressed (or was just pressed).
---
---Returns `nil` if the action's was not found.
---@param action string
---@return boolean?
function ActionHandler:is_pressed(action) end
---Returns true if the action was **just** pressed.
---
---Returns `nil` if the action was not found
---
---@param action string
---@return boolean?
function ActionHandler:was_just_pressed(action) end
---Returns true if the action was just released.
---
---Returns `nil` if the action was not found
---
---@param action string
---@return boolean?
function ActionHandler:was_just_released(action) end
---Returns the action's modifier if it was just pressed.
---
---Returns `nil` if the action's state is not `ActionState.JUST_PRESSED`,
---or if the action was not found.
---
---@param action string
---@return number?
function ActionHandler:get_just_pressed(action) end
---Returns the current state of the action.
---
---The first element in the returned tuple is the state enum, and the second
---is the state modifier. The modifer will be `nil` if the state is "idle"
---
---@return [ActionState, number?]
function ActionHandler:get_action_state(action) end

View File

@ -0,0 +1,15 @@
---@meta
---@class DeltaTime: userdata
---
---DeltaTime is an ECS world resource. When its requested from the world, a `number`
---is returned.
---
---Example:
---```lua
------@type number
---local dt = world:resource(DeltaTime)
---
---print(type(dt)) --> number
---```
DeltaTime = {}

View File

@ -0,0 +1,4 @@
---@meta
---@class Entity: userdata
Entity = {}

View File

@ -1,4 +1,4 @@
---@class Window
---@class Window: userdata
Window = {
---Gets or sets the window's focus.
---@type boolean

View File

@ -0,0 +1,75 @@
---@meta
---@class World: userdata
World = {}
---Spawn an entity with components.
---
---@param ... userdata The components to spawn on the new entity, currently must be userdata.
---@return Entity
function World:spawn(...) end
--- Query components from the world.
---
--- The `system` parameter is a function with the requested components. The function
--- is ran every time for an entity. If you modify a component and want the changes to be
--- stored, return it in the function. The order of the returned components do not matter.
---
--- Example:
--- ```lua
--- ---@type number
--- local dt = world:resource(DeltaTime)
---
--- world:view(
--- ---@param t Transform
--- function (t)
--- -- Move the transform of the entity a bit
--- t:translate(0, 0.15 * dt, 0)
--- -- Since the transform was modified, it must be returned so
--- -- the engine can store the changes.
--- return t
--- end,
--- -- Specify the requested components here
--- Transform
--- )
--- ```
---
---@param system fun(...): ...
---@param ... userdata
function World:view(system, ...) end
---Get an ECS resource.
---
---Returns `nil` if the resource was not found in the world. Many resources will
---return userdata, however some may return Lua types like `DeltaTime`
---returning a `number`.
---
---Example:
---```lua
------@type number
---local dt = world:resource(DeltaTime)
---
---print(type(dt)) --> number
---```
---
---@param resource userdata This shouldn't be an instance of userdata.
---@return any?
function World:resource(resource) end
---Add a resource to the world.
---
---If the resource already exists, it will be overwritten.
---
---@param resource userdata
function World:add_resource(resource) end
---Request an asset.
---
---Assets are loaded asyncronously, so you must wait before trying to access fields on
---the asset. You can spawn an entity with it when its still loading.
---
---Returns an asset handle to the requested resource type
---
---@param path string
---@return Handle asset An asset handle to the requested resource type.
function World:request_asset(path) end

View File

@ -0,0 +1,5 @@
---@meta
---The world global that is provided to every Lua script.
---@type World
world = nil

View File

@ -1,3 +1,10 @@
require "math.vec2"
require "math.vec3"
require "math.vec4"
require "math.quat"
require "math.transform"
require "ecs.window"
require "ecs.delta_time"
require "asset.handle"

View File

@ -0,0 +1,188 @@
---@meta
---@class Quat: userdata
---This is a Lua export of [`glam::Quat`](https://docs.rs/glam/latest/glam/f32/struct.Quat.html)
---
---@operator add(self): self
---@operator sub(self): self
---@operator div(number): self
---@operator mul(self|Vec3|number): self
---@diagnostic disable-next-line: unknown-operator
---@operator eq: self
Quat = {
---The x coordinate
---@type number
x = nil,
---The y coordinate
---@type number
y = nil,
---The z coordinate
---@type number
z = nil,
---The w coordinate
---@type number
w = nil,
}
---Create a new `Quat`
---@param x number
---@param y number
---@param z number
---@param w number
---@return self
function Quat.new(x, y, z, w) end
---Creates a quaternion from the angle (in radians) around the x axis.
---@param rad number
---@return self
function Quat.from_rotation_x(rad) end
---Creates a quaternion from the angle (in radians) around the y axis.
---@param rad number
---@return self
function Quat.from_rotation_y(rad) end
---Creates a quaternion from the angle (in radians) around the z axis.
---@param rad number
---@return self
function Quat.from_rotation_z(rad) end
---Creates a quaternion from a `Vec4`.
---@param vec4 Vec4
---@return self
function Quat.from_vec4(vec4) end
---Create a quaternion for a normalized rotation axis and angle (in radians).
---
---The axis must be a unit vector.
---
---@param axis Vec3
---@param rad number
---@return self
function Quat.from_axis_angle(axis, rad) end
---Computes the dot product of self and rhs.
---
---The dot product is equal to the cosine of the angle between two
---quaternion rotations.
---
---@param rhs Quat
---@return number
function Quat:dot(rhs) end
---Computes the length of self.
---
---@return number
function Quat:length() end
---Computes the squared length of self.
---
---This is generally faster than length() as it avoids a square root operation.
---
---@return number
function Quat:length_squared() end
---Computes 1.0 / length().
---
---For valid results, self must not be of length zero.
---@return number
function length_recip() end
---Returns `self` normalized to length `1.0`.
---
---For valid results, `self` must not be of length zero.
---
---@return self
function Quat:normalize() end
---Multipies `self` with a `Quat`
---@param rhs Quat
function Quat:mult_quat(rhs) end
---Multiplies `self` with a `Vec3`
---@param rhs Vec3
function Quat:mult_vec3(rhs) end
---Performs a linear interpolation between `self` and `rhs` based on `alpha`.
---
---Both `Quat`s must be normalized.
---
---When `alpha` is `0.0`, the result will be equal to `self`. When `alpha` is `1.0`,
---the result will be equal to `rhs`.
---
---@param rhs Quat
---@param alpha number
function Quat:lerp(rhs, alpha) end
---Performs a spherical linear interpolation between `self` and `rhs` based on `alpha`.
---
---Both `Quat`s must be normalized.
---
---When `alpha` is `0.0`, the result will be equal to `self`. When `alpha` is `1.0`,
---the result will be equal to `rhs`.
---
---@param rhs Quat
---@param alpha number
function Quat:slerp(rhs, alpha) end
---Returns the inverse of a normalized quaternion.
---
---Typically quaternion inverse returns the conjugate of a normalized quaternion.
---Because `self` is assumed to already be unit length this method does not
---normalize before returning the conjugate.
---@return self
function Quat:inverse() end
---Returns `true` if, and only if, all elements are finite. If any element is either
---`NaN`, positive or negative infinity, this will return `false`.
---
---@return boolean
function Quat:is_finite() end
---@return boolean
function Quat:is_nan() end
---Returns whether `self` is of length `1.0` or not.
---
---Uses a precision threshold of `1e-6`.
---@return boolean
function Quat:is_normalized() end
---@return boolean
function Quat:is_near_identity() end
---Returns the angle (in radians) for the minimal rotation for transforming
---this quaternion into another.
---
---Both quaternions must be normalized.
---@return number
function Quat:angle_between(rhs) end
---Rotates towards `rhs` up to `max_angle` (in radians).
---
---When `max_angle` is `0.0`, the result will be equal to `self`. When `max_angle`
---is equal to `self.angle_between(rhs)`, the result will be equal to `rhs`.
---If `max_angle` is negative, rotates towards the exact opposite of `rhs`.
---Will not go past the target.
---
---Both quaternions must be normalized.
---@return self
function Quat:rotate_towards(rhs, max_angle) end
---Returns true if the absolute difference of all elements between `self` and `rhs` is less
---than or equal to `max_abs_diff`.
---
---This can be used to compare if two quaternions contain similar elements. It works best when
---comparing with a known value. The `max_abs_diff` that should be used used depends on the
---values being compared against.
---
---For more see [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
---
---@param rhs Quat
---@param max_abs_diff number
---@return boolean
function Quat:abs_diff_eq(rhs, max_abs_diff) end

View File

@ -0,0 +1,134 @@
---@meta
---@class Transform: userdata
---
---A Transform represents a transformation of an object. A transform includes the position
---(called translation here), rotation, and scale. Rotation is represented using a Quaternion
---(or Quat for short).
---
---Although Quats can be scary, they are much more robust than euler angles for games
---since they do not suffer from things like
---[gimbal-lock](https://en.wikipedia.org/wiki/Gimbal_lock).
---
---This is a Lua export of [`lyra_math::Transform`].
---
---@operator add(Quat): self
---@operator mul(Vec3): self
---@diagnostic disable-next-line: unknown-operator
---@operator eq: self
Transform = {
---The translation/position of the transform.
---@type Vec3
translation = nil,
---The rotation of the transform.
---@type Quat
rotation = nil,
---The scale of the transform.
---@type Vec3
scale = nil,
}
function Transform:__tostring() end
---@return self
function Transform.default() end
---Create a new transform with its components.
---
---@param translation Vec3
---@param rotation Quat
---@param scale Vec3
---@return self
function Transform.new(translation, rotation, scale) end
---Create a new transform with a `Vec3` translation.
---@param translation Vec3
---@return self
function Transform.from_translation(translation) end
---Create a new transform with a translation of `x`, `y`, and `z`.
---
---@param x number
---@param y number
---@param z number
---@return self
function Transform.from_translation(x, y, z) end
---Create a clone of `self`
---@return self
function Transform:clone() end
---Returns a normalized vector pointing in the direction the Transform is facing.
---
---This represents the front of the object can be used for movement, camera orientation, and
---other directional calculations.
---
---@return Vec3
function Transform:forward() end
---Returns a normalized vector pointing to the left side of the Transform.
---
---The vector is in local space. This represents the direction that is
---perpendicular to the object's forward direction.
---
---@return Vec3
function Transform:left() end
---Returns a normalized vector that indicates the upward direction of the Transform.
---
---This vector is commonly used to define an object's orientation and is essential for maintaining
---consistent vertical alignment in 3D environments, such as for camera positioning and object alignment.
---@return Vec3
function Transform:up() end
---Rotate `self` using a quaternion
---@param quat Quat
function Transform:rotate(quat) end
---Rotate `self` around the x axis by **degrees**.
---
---@param deg number The amount of **degrees** to rotate by.
function Transform:rotate_x(deg) end
---Rotate `self` around the y axis by **degrees**.
---
---@param deg number The amount of **degrees** to rotate by.
function Transform:rotate_y(deg) end
---Rotate `self` around the z axis by **degrees**.
---
---@param deg number The amount of **degrees** to rotate by.
function Transform:rotate_z(deg) end
---Rotate `self` around the x axis by **radians** .
---
---@param rad number The amount of **radians** to rotate by.
function Transform:rotate_x_rad(rad) end
---Rotate `self` around the y axis by **radians** .
---
---@param rad number The amount of **radians** to rotate by.
function Transform:rotate_y_rad(rad) end
---Rotate `self` around the z axis by **radians** .
---
---@param rad number The amount of **radians** to rotate by.
function Transform:rotate_z_rad(rad) end
---Move `self` by `x`, `y`, and `z`.
---
---@param x number
---@param y number
---@param z number
function Transform:translate(x, y, z) end
---Performs a linear interpolation between `self` and `rhs` based on `alpha`.
---
---This will normalize the rotation `Quat`.
---
---When `alpha` is `0.0`, the result will be equal to `self`. When `alpha` is `1.0`,
---the result will be equal to `rhs`.
---
---@param rhs Transform
---@param alpha number
function Transform:lerp(rhs, alpha) end

View File

@ -1,14 +1,125 @@
---@class Vec2
---@meta
---@class Vec2: userdata
---This is a Lua export of [`glam::Vec2`](https://docs.rs/glam/latest/glam/f32/struct.Vec2.html)
---
---@operator add(self|number): self
---@operator sub(self|number): self
---@operator div(self|number): self
---@operator mul(self|number): self
---@operator mod(self|number): self
---@operator unm: self
---@diagnostic disable-next-line: unknown-operator
---@operator eq: self
Vec2 = {
---The x coordinate
---@type number
x = nil,
---The y coordinate
---@type number
y = nil,
---Create a new `Vec2`
---@param x number
---@param y number
new = function (x, y) end
---A constant `Vec2` with coordinates as `f32::NAN`.
---@type Vec2
NAN = nil,
---A constant `Vec2` with `x` as `-1.0`.
---@type Vec2
NEG_X = nil,
---A constant `Vec2` with `y` as `-1.0`.
---@type Vec2
NEG_Y = nil,
---A constant `Vec2` with both components as `-1.0`.
---@type Vec2
NEG_ONE = nil,
---A constant `Vec2` with `x` as `1.0`.
---@type Vec2
POS_X = nil,
---A constant `Vec2` with `y` as `1.0`.
---@type Vec2
POS_Y = nil,
---A constant `Vec2` with both components as `1.0`.
---@type Vec2
ONE = nil,
---A constant `Vec2` with both components as `0.0`.
---@type Vec2
ZERO = nil,
}
function Vec2:__tostring() end
---Create a new `Vec2`
---@param x number
---@param y number
---@return self
function Vec2.new(x, y) end
---Returns a vector with a length no less than min and no more than max.
---@param min number the minimum value to clamp the length to
---@param max number the maximum value to clamp the length to
---@return self
function Vec2:clamp_length(min, max) end
---Returns true if the absolute difference of all elements between `self` and `rhs` is less
---than or equal to `max_abs_diff`.
---
---This can be used to compare if two vectors contain similar elements. It works best when
---comparing with a known value. The `max_abs_diff` that should be used used depends on the
---values being compared against.
---
---For more see [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
---
---@param rhs Vec2 The other `Vec2` to compare to.
---@param max_abs_diff number Maximum absolute difference between `self` and `rhs`.
---@return boolean
function Vec2:abs_diff_eq(rhs, max_abs_diff) end
---Returns a vector containing the smallest integer greater than or equal to a number for each
---element of self.
---@return self
function Vec2:ceil() end
---Returns the angle of rotation (in radians) from `self` to `rhs` in the range [-π, +π].
---
---The inputs do not need to be unit vectors however they must be non-zero.
---
---@param rhs Vec2 The other `Vec2` to get the angle to.
---@return number
function Vec2:angle_to(rhs) end
---Returns a vector containing the absolute value of each element of `self`.
---
---@return self
function Vec2:abs() end
---Component-wise clamping of values.
---
---Each element in `min` must be less-or-equal to the corresponding element in `max`.
---
---@param min self The minimum `Vec2` components to clamp the components of `self` to.
---@param max self The maximum `Vec2` components to clamp the components of `self` to.
---@return self
function Vec2:clamp(min, max) end
---Converts `self` to an array `[x, y]`
---
---@return number[]
function Vec2:to_array() end
---Move `self` by `x` and `y` values.
---
---@param x number
---@param y number
function Vec2:move_by(x, y) end
---Move `self` by a `Vec2`.
---
---@param rhs Vec2
function Vec2:move_by(rhs) end

View File

@ -0,0 +1,139 @@
---@meta
---@class Vec3: userdata
---This is a Lua export of [`glam::Vec3`](https://docs.rs/glam/latest/glam/f32/struct.Vec3.html)
---
---@operator add(self|number): self
---@operator sub(self|number): self
---@operator div(self|number): self
---@operator mul(self|number): self
---@operator mod(self|number): self
---@operator unm: self
---@diagnostic disable-next-line: unknown-operator
---@operator eq: self
Vec3 = {
---The x coordinate
---@type number
x = nil,
---The y coordinate
---@type number
y = nil,
---The z coordinate
---@type number
z = nil,
---A constant `Vec3` with coordinates as `f32::NAN`.
---@type Vec3
NAN = nil,
---A constant `Vec3` with `x` as `-1.0`.
---@type Vec3
NEG_X = nil,
---A constant `Vec3` with `y` as `-1.0`.
---@type Vec3
NEG_Y = nil,
---A constant `Vec3` with `z` as `-1.0`.
---@type Vec3
NEG_Z = nil,
---A constant `Vec3` with all components as `-1.0`.
---@type Vec3
NEG_ONE = nil,
---A constant `Vec3` with `x` as `1.0`.
---@type Vec3
POS_X = nil,
---A constant `Vec3` with `y` as `1.0`.
---@type Vec3
POS_Y = nil,
---A constant `Vec3` with `z` as `1.0`.
---@type Vec3
POS_Z = nil,
---A constant `Vec3` with all components as `1.0`.
---@type Vec3
ONE = nil,
---A constant `Vec3` with all components as `0.0`.
---@type Vec3
ZERO = nil,
}
function Vec3:__tostring() end
---Create a new `Vec3`
---@param x number
---@param y number
---@param z number
---@return self
function Vec3.new(x, y, z) end
---Returns a vector with a length no less than min and no more than max.
---@param min number the minimum value to clamp the length to
---@param max number the maximum value to clamp the length to
---@return self
function Vec3:clamp_length(min, max) end
---Returns true if the absolute difference of all elements between `self` and `rhs` is less
---than or equal to `max_abs_diff`.
---
---This can be used to compare if two vectors contain similar elements. It works best when
---comparing with a known value. The `max_abs_diff` that should be used used depends on the
---values being compared against.
---
---For more see [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
---
---@param rhs Vec3 The other `Vec3` to compare to.
---@param max_abs_diff number Maximum absolute difference between `self` and `rhs`.
---@return boolean
function Vec3:abs_diff_eq(rhs, max_abs_diff) end
---Returns a vector containing the smallest integer greater than or equal to a number for each
---element of self.
---@return self
function Vec3:ceil() end
---Returns the angle (in radians) between two vectors in the range [-π, +π].
---
---The inputs do not need to be unit vectors however they must be non-zero.
---
---@param rhs Vec3 The other `Vec3` to get the angle to.
---@return number
function Vec3:angle_between(rhs) end
---Returns a vector containing the absolute value of each element of `self`.
---
---@return self
function Vec3:abs() end
---Component-wise clamping of values.
---
---Each element in `min` must be less-or-equal to the corresponding element in `max`.
---
---@param min self The minimum `Vec3` components to clamp the components of `self` to.
---@param max self The maximum `Vec3` components to clamp the components of `self` to.
---@return self
function Vec3:clamp(min, max) end
---Converts `self` to an array `[x, y, z]`
---
---@return number[]
function Vec3:to_array() end
---Move `self` by `x`, `y`, and `z` values.
---
---@param x number
---@param y number
---@param z number
function Vec3:move_by(x, y, z) end
---Move `self` by a `Vec3`.
---
---@param rhs Vec3
function Vec3:move_by(rhs) end

View File

@ -0,0 +1,132 @@
---@meta
---@class Vec4: userdata
---This is a Lua export of [`glam::Vec4`](https://docs.rs/glam/latest/glam/f32/struct.Vec4.html)
---
---@operator add(self|number): self
---@operator sub(self|number): self
---@operator div(self|number): self
---@operator mul(self|number): self
---@operator mod(self|number): self
---@operator unm: self
---@diagnostic disable-next-line: unknown-operator
---@operator eq: self
Vec4 = {
---The x coordinate
---@type number
x = nil,
---The y coordinate
---@type number
y = nil,
---The z coordinate
---@type number
z = nil,
---The w coordinate
---@type number
w = nil,
---A constant `Vec4` with coordinates as `f32::NAN`.
---@type Vec4
NAN = nil,
---A constant `Vec4` with `x` as `-1.0`.
---@type Vec4
NEG_X = nil,
---A constant `Vec4` with `y` as `-1.0`.
---@type Vec4
NEG_Y = nil,
---A constant `Vec4` with `z` as `-1.0`.
---@type Vec4
NEG_Z = nil,
---A constant `Vec4` with `w` as `-1.0`.
---@type Vec4
NEG_W = nil,
---A constant `Vec4` with all components as `-1.0`.
---@type Vec4
NEG_ONE = nil,
---A constant `Vec4` with `x` as `1.0`.
---@type Vec4
POS_X = nil,
---A constant `Vec4` with `y` as `1.0`.
---@type Vec4
POS_Y = nil,
---A constant `Vec4` with `z` as `1.0`.
---@type Vec4
POS_Z = nil,
---A constant `Vec4` with `w` as `1.0`.
---@type Vec4
POS_W = nil,
---A constant `Vec4` with all components as `1.0`.
---@type Vec4
ONE = nil,
---A constant `Vec4` with all components as `0.0`.
---@type Vec4
ZERO = nil,
}
function Vec4:__tostring() end
---Create a new `Vec4`
---@param x number
---@param y number
---@param z number
---@param w number
---@return self
function Vec4.new(x, y, z, w) end
---Returns a vector with a length no less than min and no more than max.
---@param min number the minimum value to clamp the length to
---@param max number the maximum value to clamp the length to
---@return self
function Vec4:clamp_length(min, max) end
---Returns true if the absolute difference of all elements between `self` and `rhs` is less
---than or equal to `max_abs_diff`.
---
---This can be used to compare if two vectors contain similar elements. It works best when
---comparing with a known value. The `max_abs_diff` that should be used used depends on the
---values being compared against.
---
---For more see [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
---
---@param rhs Vec4 The other `Vec4` to compare to.
---@param max_abs_diff number Maximum absolute difference between `self` and `rhs`.
---@return boolean
function Vec4:abs_diff_eq(rhs, max_abs_diff) end
---Returns a vector containing the smallest integer greater than or equal to a number for each
---element of self.
---@return self
function Vec4:ceil() end
---Returns a vector containing the absolute value of each element of `self`.
---
---@return self
function Vec4:abs() end
---Component-wise clamping of values.
---
---Each element in `min` must be less-or-equal to the corresponding element in `max`.
---
---@param min self The minimum `Vec4` components to clamp the components of `self` to.
---@param max self The maximum `Vec4` components to clamp the components of `self` to.
---@return self
function Vec4:clamp(min, max) end
---Converts `self` to an array `[x, y, z]`
---
---@return number[]
function Vec4:to_array() end

View File

@ -40,14 +40,18 @@ impl ScriptApiProvider for LyraEcsApiProvider {
fn expose_api(&mut self, _: &ScriptData, ctx: &mut Self::ScriptContext) -> Result<(), crate::ScriptError> {
let ctx = ctx.lock().unwrap();
// load window util
// load window enums
let bytes = include_str!("../../../scripts/lua/window.lua");
ctx.load(bytes).exec().unwrap();
// load asset handle enums
let bytes = include_str!("../../../scripts/lua/asset_handle.lua");
ctx.load(bytes).exec().unwrap();
let globals = ctx.globals();
globals.set("World", ctx.create_proxy::<ScriptWorldPtr>()?)?;
globals.set("DynamicBundle", ctx.create_proxy::<ScriptDynamicBundle>()?)?;
globals.set("SceneComponent", ctx.create_proxy::<LuaSceneHandle>()?)?;
globals.set("SceneHandler", ctx.create_proxy::<LuaSceneHandle>()?)?;
globals.set("ActionHandler", ctx.create_proxy::<LuaActionHandler>()?)?;
globals.set("Window", ctx.create_proxy::<LuaWindow>()?)?;

View File

@ -294,7 +294,7 @@ impl mlua::UserData for ScriptWorldPtr {
Ok(())
});
methods.add_method_mut("request_res", |lua, this, path: String| {
methods.add_method_mut("request_asset", |lua, this, path: String| {
let world = this.write();
let man = world.get_resource_mut::<ResourceManager>().unwrap();
let handle = man.request_raw(&path).unwrap();

View File

@ -111,9 +111,12 @@ impl mlua::FromLua for LuaResHandle {
}
}
// TODO: fields
wrap_lua_struct!(lyra_resource::gltf::PbrGlossiness, skip(lua_reflect)); // doesn't need internal lua reflection methods
// TODO: fields
wrap_lua_struct!(lyra_resource::gltf::Specular, skip(lua_reflect)); // doesn't need internal lua reflection methods
// TODO: fields
lua_wrap_handle!(SceneGraph, name=Scene, {});
lua_wrap_handle!(Mesh,

View File

@ -127,13 +127,21 @@ impl mlua::UserData for LuaActionHandler {
methods.add_method("get_action_state", |lua, this, action: String| {
let state = this.handler.get_action_state(action);
// if the state wasn't found, return Nil.
if state.is_none() {
let mut v = mlua::MultiValue::new();
v.push_back(mlua::Value::Nil);
return Ok(v);
}
let state = state.unwrap();
let (name, val) = match state {
ActionState::Idle => ("Idle", None),
ActionState::Pressed(v) => ("Pressed", Some(v)),
ActionState::JustPressed(v) => ("JustPressed", Some(v)),
ActionState::JustReleased => ("JustReleased", None),
ActionState::Axis(v) => ("Axis", Some(v)),
ActionState::Other(v) => ("Other", Some(v)),
ActionState::Idle => ("idle", None),
ActionState::Pressed(v) => ("pressed", Some(v)),
ActionState::JustPressed(v) => ("just_pressed", Some(v)),
ActionState::JustReleased => ("just_released", None),
ActionState::Axis(v) => ("axis", Some(v)),
ActionState::Other(v) => ("other", Some(v)),
};
let mut multi = Vec::new();

View File

@ -1,4 +1,6 @@
use crate::lyra_engine;
use std::sync::Arc;
use crate::{lua::Error, lyra_engine};
use lyra_game::math;
use lyra_scripting_derive::{lua_vec_wrap_extension, wrap_lua_struct};
use mlua::FromLuaMulti;
@ -29,7 +31,14 @@ wrap_lua_struct!(
} else if let Ok(v) = Self::from_lua_multi(vals_clone, lua) {
this.0 += v.0;
} else {
todo!("handle invalid argument error");
return Err(mlua::Error::BadArgument {
to: Some("Vec2:move_by".into()),
pos: 2,
name: None,
cause: Arc::new(mlua::Error::runtime(
"expected (number, number, number) or (Vec2), received neither"
)),
});
}
Ok(())
@ -62,7 +71,14 @@ wrap_lua_struct!(
} else if let Ok(v) = Self::from_lua_multi(vals_clone, lua) {
this.0 += v.0;
} else {
todo!("handle invalid argument error");
return Err(mlua::Error::BadArgument {
to: Some("Vec3:move_by".into()),
pos: 2,
name: None,
cause: Arc::new(mlua::Error::runtime(
"expected (number, number, number) or (Vec3), received neither"
)),
});
}
Ok(())
@ -122,10 +138,27 @@ wrap_lua_struct!(
Ok(Self(q))
});
methods.add_function("from_vec4", |_, v: LuaVec4| {
Ok(Self(math::Quat::from_vec4(*v)))
});
methods.add_function("from_axis_angle", |_, (axis, angle): (LuaVec3, f32)| {
let q = math::Quat::from_axis_angle(*axis, angle);
Ok(Self(q))
});
methods.add_method("dot", |_, this, (rhs,): (Self,)| {
Ok(this.dot(rhs.0))
});
methods.add_method("conjugate", |_, this, ()| {
Ok(Self(this.conjugate()))
});
methods.add_method("inverse", |_, this, ()| {
Ok(Self(this.inverse()))
});
methods.add_method("length", |_, this, ()| {
Ok(this.length())
});
@ -134,20 +167,50 @@ wrap_lua_struct!(
Ok(this.length_squared())
});
methods.add_method_mut("normalize", |_, this, ()| {
this.0 = this.normalize();
Ok(())
methods.add_method("length_recip", |_, this, ()| {
Ok(this.length_recip())
});
methods.add_method_mut("mult_quat", |_, this, (rhs,): (Self,)| {
this.0 *= rhs.0;
Ok(())
methods.add_method("normalize", |_, this, ()| {
Ok(Self(this.normalize()))
});
methods.add_method("mult_quat", |_, this, (rhs,): (Self,)| {
Ok(Self(this.0 * rhs.0))
});
methods.add_method("mult_vec3", |_, this, (rhs,): (LuaVec3,)| {
Ok(LuaVec3(this.0 * rhs.0))
});
methods.add_method("is_finite", |_, this, ()| {
Ok(this.is_finite())
});
methods.add_method("is_nan", |_, this, ()| {
Ok(this.is_nan())
});
methods.add_method("is_normalized", |_, this, ()| {
Ok(this.is_normalized())
});
methods.add_method("is_near_identity", |_, this, ()| {
Ok(this.is_near_identity())
});
methods.add_method("angle_between", |_, this, rhs: LuaQuat| {
Ok(this.angle_between(*rhs))
});
methods.add_method("rotate_towards", |_, this, (rhs, max_angle): (LuaQuat, f32)| {
Ok(Self(this.rotate_towards(*rhs, max_angle)))
});
methods.add_method("abs_diff_eq", |_, this, (rhs, max_abs_diff): (LuaQuat, f32)| {
Ok(this.abs_diff_eq(*rhs, max_abs_diff))
});
// manually implemented here since multiplying may not return `Self`.
methods.add_meta_method(mlua::MetaMethod::Mul, |lua, this, (val,): (mlua::Value,)| {
use mlua::IntoLua;
@ -169,7 +232,15 @@ wrap_lua_struct!(
.into_lua(lua)
},
_ => {
todo!()
let t = val.type_name();
Err(mlua::Error::BadArgument {
to: Some("Quat:__mul".into()),
pos: 2,
name: None,
cause: Arc::new(mlua::Error::external(
Error::type_mismatch("Vec3, Quat, or Number", t)
)),
})
}
}
});
@ -177,6 +248,10 @@ wrap_lua_struct!(
methods.add_method("lerp", |_, this, (rhs, alpha): (Self, f32)| {
Ok(Self(this.lerp(*rhs, alpha)))
});
methods.add_method("slerp", |_, this, (rhs, alpha): (Self, f32)| {
Ok(Self(this.slerp(*rhs, alpha)))
});
}
);
@ -193,12 +268,22 @@ wrap_lua_struct!(
Ok(Self(math::Transform::new(*pos, *rot, *scale)))
});
methods.add_function("from_translation", |_, (pos,): (LuaVec3,)| {
Ok(Self(math::Transform::from_translation(*pos)))
});
methods.add_function("from_xyz", |_, (x, y, z)| {
methods.add_function("from_translation", |lua, vals: mlua::MultiValue| {
let vals_clone = vals.clone();
if let Ok((x, y, z)) = <(f32, f32, f32) as FromLuaMulti>::from_lua_multi(vals, lua) {
Ok(Self(math::Transform::from_xyz(x, y, z)))
} else if let Ok(v) = LuaVec3::from_lua_multi(vals_clone, lua) {
Ok(Self(math::Transform::from_translation(*v)))
} else {
Err(mlua::Error::BadArgument {
to: Some("Transform:from_translation".into()),
pos: 2,
name: None,
cause: Arc::new(mlua::Error::runtime(
"expected (number, number, number) or (Vec3), received neither"
)),
})
}
});
methods.add_method("clone", |_, this, ()| {