render: implement simple texture atlas for the shadow maps

This commit is contained in:
SeanOMik 2024-07-05 17:29:38 -04:00
parent 6d57b40629
commit e2b554b4ef
Signed by: SeanOMik
GPG Key ID: FEC9E2FC15235964
5 changed files with 162 additions and 29 deletions

View File

@ -56,7 +56,7 @@ pub enum SlotValue {
Lazy, Lazy,
TextureView(Arc<wgpu::TextureView>), TextureView(Arc<wgpu::TextureView>),
Sampler(Rc<wgpu::Sampler>), Sampler(Rc<wgpu::Sampler>),
Texture(Rc<wgpu::Texture>), Texture(Arc<wgpu::Texture>),
Buffer(Arc<wgpu::Buffer>), Buffer(Arc<wgpu::Buffer>),
RenderTarget(Rc<RefCell<RenderTarget>>), RenderTarget(Rc<RefCell<RenderTarget>>),
Frame(Rc<RefCell<Option<Frame>>>), Frame(Rc<RefCell<Option<Frame>>>),
@ -71,7 +71,7 @@ impl SlotValue {
bind_match!(self, Self::Sampler(v) => v) bind_match!(self, Self::Sampler(v) => v)
} }
pub fn as_texture(&self) -> Option<&Rc<wgpu::Texture>> { pub fn as_texture(&self) -> Option<&Arc<wgpu::Texture>> {
bind_match!(self, Self::Texture(v) => v) bind_match!(self, Self::Texture(v) => v)
} }

View File

@ -1,6 +1,10 @@
use std::{mem, num::NonZeroU64, rc::Rc, sync::Arc}; use std::{mem, num::NonZeroU64, rc::Rc, sync::Arc};
use lyra_ecs::{query::{filter::Has, Entities}, AtomicRef, Entity, ResourceData}; use glam::UVec2;
use lyra_ecs::{
query::{filter::Has, Entities},
AtomicRef, Entity, ResourceData,
};
use lyra_game_derive::RenderGraphLabel; use lyra_game_derive::RenderGraphLabel;
use lyra_math::Transform; use lyra_math::Transform;
use rustc_hash::FxHashMap; use rustc_hash::FxHashMap;
@ -10,12 +14,10 @@ use wgpu::util::DeviceExt;
use crate::render::{ use crate::render::{
graph::{Node, NodeDesc, NodeType, SlotAttribute, SlotValue}, graph::{Node, NodeDesc, NodeType, SlotAttribute, SlotValue},
light::directional::DirectionalLight, light::directional::DirectionalLight,
resource::{ resource::{RenderPipeline, RenderPipelineDescriptor, Shader, VertexState},
RenderPipeline, RenderPipelineDescriptor, Shader,
VertexState,
},
transform_buffer_storage::TransformBuffers, transform_buffer_storage::TransformBuffers,
vertex::Vertex, vertex::Vertex,
TextureAtlas,
}; };
use super::{MeshBufferStorage, RenderAssets, RenderMeshes}; use super::{MeshBufferStorage, RenderAssets, RenderMeshes};
@ -50,10 +52,7 @@ pub struct ShadowMapsPass {
mesh_buffers: Option<ResourceData>, mesh_buffers: Option<ResourceData>,
pipeline: Option<RenderPipeline>, pipeline: Option<RenderPipeline>,
/// The depth map atlas texture atlas: Arc<TextureAtlas>,
atlas_texture: Rc<wgpu::Texture>,
/// The depth map atlas texture view
atlas_view: Arc<wgpu::TextureView>,
/// The depth map atlas sampler /// The depth map atlas sampler
atlas_sampler: Rc<wgpu::Sampler>, atlas_sampler: Rc<wgpu::Sampler>,
} }
@ -78,7 +77,7 @@ impl ShadowMapsPass {
}), }),
); );
let tex = device.create_texture(&wgpu::TextureDescriptor { /* let tex = device.create_texture(&wgpu::TextureDescriptor {
label: Some("texture_shadow_map_atlas"), label: Some("texture_shadow_map_atlas"),
size: wgpu::Extent3d { size: wgpu::Extent3d {
width: SHADOW_SIZE.x, width: SHADOW_SIZE.x,
@ -96,7 +95,15 @@ impl ShadowMapsPass {
let view = tex.create_view(&wgpu::TextureViewDescriptor { let view = tex.create_view(&wgpu::TextureViewDescriptor {
label: Some("shadows_map_view"), label: Some("shadows_map_view"),
..Default::default() ..Default::default()
}); }); */
let atlas = TextureAtlas::new(
device,
wgpu::TextureFormat::Depth32Float,
wgpu::TextureUsages::RENDER_ATTACHMENT | wgpu::TextureUsages::TEXTURE_BINDING,
SHADOW_SIZE,
UVec2::new(4, 4),
);
let sampler = device.create_sampler(&wgpu::SamplerDescriptor { let sampler = device.create_sampler(&wgpu::SamplerDescriptor {
label: Some("sampler_shadow_map_atlas"), label: Some("sampler_shadow_map_atlas"),
@ -119,14 +126,13 @@ impl ShadowMapsPass {
pipeline: None, pipeline: None,
atlas_sampler: Rc::new(sampler), atlas_sampler: Rc::new(sampler),
atlas_texture: Rc::new(tex), atlas: Arc::new(atlas),
atlas_view: Arc::new(view),
} }
} }
fn create_depth_map(&mut self, device: &wgpu::Device, entity: Entity, light_pos: Transform) { fn create_depth_map(&mut self, device: &wgpu::Device, entity: Entity, light_pos: Transform) {
const NEAR_PLANE: f32 = 0.1; const NEAR_PLANE: f32 = 0.1;
const FAR_PLANE: f32 = 25.5; const FAR_PLANE: f32 = 45.0;
let ortho_proj = let ortho_proj =
glam::Mat4::orthographic_rh(-10.0, 10.0, -10.0, 10.0, NEAR_PLANE, FAR_PLANE); glam::Mat4::orthographic_rh(-10.0, 10.0, -10.0, 10.0, NEAR_PLANE, FAR_PLANE);
@ -188,13 +194,13 @@ impl Node for ShadowMapsPass {
node.add_texture_slot( node.add_texture_slot(
ShadowMapsPassSlots::ShadowAtlasTexture, ShadowMapsPassSlots::ShadowAtlasTexture,
SlotAttribute::Output, SlotAttribute::Output,
Some(SlotValue::Texture(self.atlas_texture.clone())), Some(SlotValue::Texture(self.atlas.texture().clone())),
); );
node.add_texture_view_slot( node.add_texture_view_slot(
ShadowMapsPassSlots::ShadowAtlasTextureView, ShadowMapsPassSlots::ShadowAtlasTextureView,
SlotAttribute::Output, SlotAttribute::Output,
Some(SlotValue::TextureView(self.atlas_view.clone())), Some(SlotValue::TextureView(self.atlas.view().clone())),
); );
node.add_sampler_slot( node.add_sampler_slot(
@ -222,6 +228,8 @@ impl Node for ShadowMapsPass {
self.transform_buffers = world.try_get_resource_data::<TransformBuffers>(); self.transform_buffers = world.try_get_resource_data::<TransformBuffers>();
self.mesh_buffers = world.try_get_resource_data::<RenderAssets<MeshBufferStorage>>(); self.mesh_buffers = world.try_get_resource_data::<RenderAssets<MeshBufferStorage>>();
world.add_resource(self.atlas.clone());
for (entity, pos, _) in world.view_iter::<(Entities, &Transform, Has<DirectionalLight>)>() { for (entity, pos, _) in world.view_iter::<(Entities, &Transform, Has<DirectionalLight>)>() {
if !self.depth_maps.contains_key(&entity) { if !self.depth_maps.contains_key(&entity) {
self.create_depth_map(graph.device(), entity, *pos); self.create_depth_map(graph.device(), entity, *pos);
@ -231,7 +239,8 @@ impl Node for ShadowMapsPass {
// update the light projection buffer slot // update the light projection buffer slot
let (_, dir_depth_map) = self.depth_maps.iter().next().unwrap(); let (_, dir_depth_map) = self.depth_maps.iter().next().unwrap();
let val = graph.slot_value_mut(ShadowMapsPassSlots::DirLightProjectionBuffer) let val = graph
.slot_value_mut(ShadowMapsPassSlots::DirLightProjectionBuffer)
.unwrap(); .unwrap();
*val = SlotValue::Buffer(dir_depth_map.light_projection_buffer.clone()); *val = SlotValue::Buffer(dir_depth_map.light_projection_buffer.clone());
@ -308,7 +317,7 @@ impl Node for ShadowMapsPass {
label: Some("pass_shadow_map"), label: Some("pass_shadow_map"),
color_attachments: &[], color_attachments: &[],
depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachment { depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachment {
view: &self.atlas_view, view: self.atlas.view(),
depth_ops: Some(wgpu::Operations { depth_ops: Some(wgpu::Operations {
load: wgpu::LoadOp::Clear(1.0), load: wgpu::LoadOp::Clear(1.0),
store: true, store: true,
@ -317,6 +326,11 @@ impl Node for ShadowMapsPass {
}), }),
}); });
pass.set_pipeline(&pipeline); pass.set_pipeline(&pipeline);
let viewport = self.atlas.texture_viewport(0);
// only render to the light's map in the atlas
pass.set_viewport(viewport.offset.x as _, viewport.offset.y as _, viewport.size.x as _, viewport.size.y as _, 0.0, 1.0);
// only clear the light map in the atlas
pass.set_scissor_rect(viewport.offset.x, viewport.offset.y, viewport.size.x, viewport.size.y);
for job in render_meshes.iter() { for job in render_meshes.iter() {
// get the mesh (containing vertices) and the buffers from storage // get the mesh (containing vertices) and the buffers from storage

View File

@ -15,3 +15,6 @@ pub mod light;
//pub mod light_cull_compute; //pub mod light_cull_compute;
pub mod avec; pub mod avec;
pub mod graph; pub mod graph;
mod texture_atlas;
pub use texture_atlas::*;

View File

@ -149,6 +149,34 @@ fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
let light: Light = u_lights.data[light_index]; let light: Light = u_lights.data[light_index];
if (light.light_ty == LIGHT_TY_DIRECTIONAL) { if (light.light_ty == LIGHT_TY_DIRECTIONAL) {
/*var proj_coords = in.frag_pos_light_space.xyz / in.frag_pos_light_space.w;
// for some reason the y component is clipped after transforming
proj_coords.y = -proj_coords.y;
// Remap xy to [0.0, 1.0]
let xy_remapped = proj_coords.xy * 0.5 + 0.5;
proj_coords.x = mix(0.0, 1024.0 / 4096.0, xy_remapped.x);
proj_coords.y = mix(0.0, 1024.0 / 4096.0, xy_remapped.y);
let closest_depth = textureSampleLevel(t_shadow_maps_atlas, s_shadow_maps_atlas, proj_coords.xy, 0.0, vec2<i32>(0, 0));
let current_depth = proj_coords.z;
// use a bias to avoid shadow acne
let light_dir = normalize(-light.direction);
let bias = max(0.05 * (1.0 - dot(in.world_normal, light_dir)), 0.005);
var shadow = 0.0;
if current_depth - bias > closest_depth {
shadow = 1.0;
}
// dont cast shadows outside the light's far plane
if (proj_coords.z > 1.0) {
shadow = 0.0;
}
return vec4<f32>(vec3<f32>(closest_depth), 1.0);*/
let light_dir = normalize(-light.direction); let light_dir = normalize(-light.direction);
let shadow = calc_shadow(in.world_normal, light_dir, in.frag_pos_light_space); let shadow = calc_shadow(in.world_normal, light_dir, in.frag_pos_light_space);
light_res += blinn_phong_dir_light(in.world_position, in.world_normal, light, u_material, specular_color, shadow); light_res += blinn_phong_dir_light(in.world_position, in.world_normal, light, u_material, specular_color, shadow);
@ -168,12 +196,27 @@ fn calc_shadow(normal: vec3<f32>, light_dir: vec3<f32>, frag_pos_light_space: ve
// for some reason the y component is clipped after transforming // for some reason the y component is clipped after transforming
proj_coords.y = -proj_coords.y; proj_coords.y = -proj_coords.y;
// dont cast shadows outside the light's far plane
if (proj_coords.z > 1.0) {
return 0.0;
}
// Remap xy to [0.0, 1.0] // Remap xy to [0.0, 1.0]
let xy_remapped = proj_coords.xy * 0.5 + 0.5; let xy_remapped = proj_coords.xy * 0.5 + 0.5;
proj_coords.x = xy_remapped.x; // TODO: when more lights are added, change the index, and the atlas sizes
proj_coords.y = xy_remapped.y; let shadow_map_index = 0;
let shadow_map_region = vec2<f32>( (f32(shadow_map_index) * 1024.0) / 4096.0, (f32(shadow_map_index + 1) * 1024.0) / 4096.0);
// lerp the tex coords to the shadow map for this light.
proj_coords.x = mix(shadow_map_region.x, shadow_map_region.y, xy_remapped.x);
proj_coords.y = mix(shadow_map_region.x, shadow_map_region.y, xy_remapped.y);
let closest_depth = textureSampleLevel(t_shadow_maps_atlas, s_shadow_maps_atlas, proj_coords.xy, 0.0); // simulate `ClampToBorder`, not creating shadows past the shadow map regions
if (proj_coords.x > shadow_map_region.y && proj_coords.y > shadow_map_region.y)
|| (proj_coords.x < shadow_map_region.x && proj_coords.y < shadow_map_region.x) {
return 0.0;
}
let closest_depth = textureSampleLevel(t_shadow_maps_atlas, s_shadow_maps_atlas, proj_coords.xy, 0.0, vec2<i32>(0, 0));
let current_depth = proj_coords.z; let current_depth = proj_coords.z;
// use a bias to avoid shadow acne // use a bias to avoid shadow acne
@ -183,11 +226,6 @@ fn calc_shadow(normal: vec3<f32>, light_dir: vec3<f32>, frag_pos_light_space: ve
shadow = 1.0; shadow = 1.0;
} }
// dont cast shadows outside the light's far plane
if (proj_coords.z > 1.0) {
shadow = 0.0;
}
return shadow; return shadow;
} }

View File

@ -0,0 +1,78 @@
use std::sync::Arc;
use glam::UVec2;
#[derive(Debug, Clone, Copy)]
pub struct AtlasViewport {
pub offset: UVec2,
pub size: UVec2,
}
pub struct TextureAtlas {
/// The size of each texture in the atlas.
texture_size: UVec2,
/// The amount of textures in the atlas.
texture_count: UVec2,
texture_format: wgpu::TextureFormat,
texture: Arc<wgpu::Texture>,
view: Arc<wgpu::TextureView>,
}
impl TextureAtlas {
pub fn new(device: &wgpu::Device, format: wgpu::TextureFormat, usages: wgpu::TextureUsages, texture_size: UVec2, texture_count: UVec2) -> Self {
let total_size = texture_size * texture_count;
let texture = device.create_texture(&wgpu::TextureDescriptor {
label: Some("texture_atlas"),
size: wgpu::Extent3d { width: total_size.x, height: total_size.y, depth_or_array_layers: 1 },
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format,
usage: usages,
view_formats: &[],
});
let view = texture.create_view(&wgpu::TextureViewDescriptor::default());
Self {
texture_size,
texture_count,
texture_format: format,
texture: Arc::new(texture),
view: Arc::new(view),
}
}
/// Get the viewport of a texture index in the atlas.
pub fn texture_viewport(&self, atlas_index: u32) -> AtlasViewport {
let x = (atlas_index % self.texture_count.x) * self.texture_size.x;
let y = (atlas_index / self.texture_count.y) * self.texture_size.y;
AtlasViewport { offset: UVec2::new(x, y), size: self.texture_size }
}
pub fn view(&self) -> &Arc<wgpu::TextureView> {
&self.view
}
pub fn texture(&self) -> &Arc<wgpu::Texture> {
&self.texture
}
pub fn texture_format(&self) -> &wgpu::TextureFormat {
&self.texture_format
}
pub fn texture_size(&self) -> UVec2 {
self.texture_size
}
pub fn texture_count(&self) -> UVec2 {
self.texture_count
}
pub fn total_texture_count(&self) -> u32 {
self.texture_count.x * self.texture_count.y
}
}