render: point light shadows in texture atlas, fix bug with unaligned GpuSlotBuffer

This commit is contained in:
SeanOMik 2024-07-13 00:56:09 -04:00
parent 40fa9c09da
commit b45c2f4fab
Signed by: SeanOMik
GPG Key ID: FEC9E2FC15235964
5 changed files with 258 additions and 80 deletions

View File

@ -161,13 +161,13 @@ fn setup_scene_plugin(game: &mut Game) {
DirectionalLight { DirectionalLight {
enabled: true, enabled: true,
color: Vec3::new(1.0, 0.95, 0.9), color: Vec3::new(1.0, 0.95, 0.9),
intensity: 1.0, intensity: 0.5,
}, },
light_tran, light_tran,
)); ));
world.spawn(( world.spawn((
cube_mesh.clone(), //cube_mesh.clone(),
PointLight { PointLight {
enabled: true, enabled: true,
color: Vec3::new(0.133, 0.098, 0.91), color: Vec3::new(0.133, 0.098, 0.91),
@ -177,6 +177,18 @@ fn setup_scene_plugin(game: &mut Game) {
}, },
Transform::from_xyz(5.0, -2.5, -3.3), Transform::from_xyz(5.0, -2.5, -3.3),
)); ));
world.spawn((
//cube_mesh.clone(),
PointLight {
enabled: true,
color: Vec3::new(0.278, 0.984, 0.0),
intensity: 2.0,
range: 9.0,
..Default::default()
},
Transform::from_xyz(-0.5, 2.0, -5.0),
));
} }
let mut camera = CameraComponent::new_3d(); let mut camera = CameraComponent::new_3d();

View File

@ -1,7 +1,6 @@
use std::{ use std::{
collections::VecDeque, collections::VecDeque,
mem, mem,
num::NonZeroU64,
rc::Rc, rc::Rc,
sync::{Arc, RwLock, RwLockReadGuard, RwLockWriteGuard}, sync::{Arc, RwLock, RwLockReadGuard, RwLockWriteGuard},
}; };
@ -13,13 +12,13 @@ use lyra_ecs::{
use lyra_game_derive::RenderGraphLabel; use lyra_game_derive::RenderGraphLabel;
use lyra_math::{Angle, Transform}; use lyra_math::{Angle, Transform};
use rustc_hash::FxHashMap; use rustc_hash::FxHashMap;
use tracing::{debug, warn}; use tracing::warn;
use wgpu::util::DeviceExt; use wgpu::util::DeviceExt;
use crate::render::{ use crate::render::{
graph::{Node, NodeDesc, NodeType, SlotAttribute, SlotValue}, graph::{Node, NodeDesc, NodeType, SlotAttribute, SlotValue},
light::{directional::DirectionalLight, LightType, PointLight}, light::{directional::DirectionalLight, LightType, PointLight},
resource::{RenderPipeline, RenderPipelineDescriptor, Shader, VertexState}, resource::{FragmentState, RenderPipeline, RenderPipelineDescriptor, Shader, VertexState},
transform_buffer_storage::TransformBuffers, transform_buffer_storage::TransformBuffers,
vertex::Vertex, vertex::Vertex,
AtlasFrame, GpuSlotBuffer, TextureAtlas, AtlasFrame, GpuSlotBuffer, TextureAtlas,
@ -68,6 +67,7 @@ pub struct ShadowMapsPass {
render_meshes: Option<ResourceData>, render_meshes: Option<ResourceData>,
mesh_buffers: Option<ResourceData>, mesh_buffers: Option<ResourceData>,
pipeline: Option<RenderPipeline>, pipeline: Option<RenderPipeline>,
point_light_pipeline: Option<RenderPipeline>,
atlas: LightShadowMapAtlas, atlas: LightShadowMapAtlas,
/// The depth map atlas sampler /// The depth map atlas sampler
@ -84,10 +84,8 @@ impl ShadowMapsPass {
visibility: wgpu::ShaderStages::VERTEX_FRAGMENT, visibility: wgpu::ShaderStages::VERTEX_FRAGMENT,
ty: wgpu::BindingType::Buffer { ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Storage { read_only: true }, ty: wgpu::BufferBindingType::Storage { read_only: true },
has_dynamic_offset: true, has_dynamic_offset: false,
min_binding_size: Some( min_binding_size: None,
NonZeroU64::new(mem::size_of::<LightShadowUniform>() as _).unwrap(),
),
}, },
count: None, count: None,
}], }],
@ -98,7 +96,7 @@ impl ShadowMapsPass {
device, device,
wgpu::TextureFormat::Depth32Float, wgpu::TextureFormat::Depth32Float,
wgpu::TextureUsages::RENDER_ATTACHMENT | wgpu::TextureUsages::TEXTURE_BINDING, wgpu::TextureUsages::RENDER_ATTACHMENT | wgpu::TextureUsages::TEXTURE_BINDING,
SHADOW_SIZE * 4, SHADOW_SIZE * 8,
); );
let atlas_size_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { let atlas_size_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
@ -121,12 +119,11 @@ impl ShadowMapsPass {
let cap = device.limits().max_storage_buffer_binding_size as u64 let cap = device.limits().max_storage_buffer_binding_size as u64
/ mem::size_of::<LightShadowUniform>() as u64; / mem::size_of::<LightShadowUniform>() as u64;
let uniforms_buffer = GpuSlotBuffer::new_aligned( let uniforms_buffer = GpuSlotBuffer::new(
device, device,
Some("buffer_shadow_maps_light"), Some("buffer_shadow_maps_light"),
wgpu::BufferUsages::STORAGE | wgpu::BufferUsages::COPY_DST, wgpu::BufferUsages::STORAGE | wgpu::BufferUsages::COPY_DST,
cap, cap,
256,
); );
let uniforms_bg = device.create_bind_group(&wgpu::BindGroupDescriptor { let uniforms_bg = device.create_bind_group(&wgpu::BindGroupDescriptor {
@ -137,7 +134,7 @@ impl ShadowMapsPass {
resource: wgpu::BindingResource::Buffer(wgpu::BufferBinding { resource: wgpu::BindingResource::Buffer(wgpu::BufferBinding {
buffer: uniforms_buffer.buffer(), buffer: uniforms_buffer.buffer(),
offset: 0, offset: 0,
size: Some(NonZeroU64::new(mem::size_of::<LightShadowUniform>() as _).unwrap()), size: None,
}), }),
}], }],
}); });
@ -152,6 +149,7 @@ impl ShadowMapsPass {
render_meshes: None, render_meshes: None,
mesh_buffers: None, mesh_buffers: None,
pipeline: None, pipeline: None,
point_light_pipeline: None,
atlas_sampler: Rc::new(sampler), atlas_sampler: Rc::new(sampler),
atlas: LightShadowMapAtlas(Arc::new(RwLock::new(atlas))), atlas: LightShadowMapAtlas(Arc::new(RwLock::new(atlas))),
@ -165,6 +163,7 @@ impl ShadowMapsPass {
light_type: LightType, light_type: LightType,
entity: Entity, entity: Entity,
light_pos: Transform, light_pos: Transform,
far_plane: f32,
) -> LightDepthMap { ) -> LightDepthMap {
const NEAR_PLANE: f32 = 0.1; const NEAR_PLANE: f32 = 0.1;
const FAR_PLANE: f32 = 45.0; const FAR_PLANE: f32 = 45.0;
@ -193,6 +192,11 @@ impl ShadowMapsPass {
let u = LightShadowUniform { let u = LightShadowUniform {
space_mat: light_proj, space_mat: light_proj,
atlas_frame, atlas_frame,
near_plane: NEAR_PLANE,
far_plane,
_padding1: [0; 2],
light_pos: light_pos.translation,
_padding2: 0,
}; };
let uniform_index = self.light_uniforms_buffer.insert(queue, &u); let uniform_index = self.light_uniforms_buffer.insert(queue, &u);
@ -207,10 +211,11 @@ impl ShadowMapsPass {
Angle::Degrees(90.0).to_radians(), Angle::Degrees(90.0).to_radians(),
aspect, aspect,
NEAR_PLANE, NEAR_PLANE,
FAR_PLANE, far_plane,
); );
let light_trans = light_pos.translation; let light_trans = light_pos.translation;
// right, left, top, bottom, near, and far
let views = [ let views = [
projection projection
* glam::Mat4::look_at_rh( * glam::Mat4::look_at_rh(
@ -287,6 +292,11 @@ impl ShadowMapsPass {
&LightShadowUniform { &LightShadowUniform {
space_mat: views[i], space_mat: views[i],
atlas_frame: frames[i], atlas_frame: frames[i],
near_plane: NEAR_PLANE,
far_plane,
_padding1: [0; 2],
light_pos: light_trans,
_padding2: 0,
}, },
); );
indices[i] = uniform_i; indices[i] = uniform_i;
@ -380,19 +390,18 @@ impl Node for ShadowMapsPass {
/* for (entity, pos, (has_dir, has_point)) in world.view_iter::<(Entities, &Transform, Or<Has<DirectionalLight>, Has<PointLight>>)>() { /* for (entity, pos, (has_dir, has_point)) in world.view_iter::<(Entities, &Transform, Or<Has<DirectionalLight>, Has<PointLight>>)>() {
if !self.depth_maps.contains_key(&entity) { if !self.depth_maps.contains_key(&entity) {
let light_type = if has_dir.is_some() { // TODO: calculate far plane
LightType::Directional let (light_type, far_plane) = if has_dir.is_some() {
(LightType::Directional, 45.0)
} else if has_point.is_some() { } else if has_point.is_some() {
LightType::Point (LightType::Point, 45.0)
} else { } else {
todo!("Spot lights") todo!("Spot lights")
}; };
debug!("Creating depth map for {light_type:?}");
// TODO: dont pack the textures as they're added // TODO: dont pack the textures as they're added
let atlas_index = let atlas_index =
self.create_depth_map(&context.queue, light_type, entity, *pos); self.create_depth_map(&context.queue, light_type, entity, *pos, far_plane);
index_components_queue.push_back((entity, atlas_index)); index_components_queue.push_back((entity, atlas_index));
} }
} */ } */
@ -401,7 +410,7 @@ impl Node for ShadowMapsPass {
if !self.depth_maps.contains_key(&entity) { if !self.depth_maps.contains_key(&entity) {
// TODO: dont pack the textures as they're added // TODO: dont pack the textures as they're added
let atlas_index = let atlas_index =
self.create_depth_map(&context.queue, LightType::Directional, entity, *pos); self.create_depth_map(&context.queue, LightType::Directional, entity, *pos, 45.0);
index_components_queue.push_back((entity, atlas_index)); index_components_queue.push_back((entity, atlas_index));
} }
} }
@ -410,7 +419,7 @@ impl Node for ShadowMapsPass {
if !self.depth_maps.contains_key(&entity) { if !self.depth_maps.contains_key(&entity) {
// TODO: dont pack the textures as they're added // TODO: dont pack the textures as they're added
let atlas_index = let atlas_index =
self.create_depth_map(&context.queue, LightType::Point, entity, *pos); self.create_depth_map(&context.queue, LightType::Point, entity, *pos, 30.0);
index_components_queue.push_back((entity, atlas_index)); index_components_queue.push_back((entity, atlas_index));
} }
} }
@ -439,18 +448,14 @@ impl Node for ShadowMapsPass {
&graph.device, &graph.device,
&RenderPipelineDescriptor { &RenderPipelineDescriptor {
label: Some("pipeline_shadows".into()), label: Some("pipeline_shadows".into()),
layouts: vec![bgl, transforms], layouts: vec![bgl.clone(), transforms.clone()],
push_constant_ranges: vec![], push_constant_ranges: vec![],
vertex: VertexState { vertex: VertexState {
module: shader.clone(), module: shader.clone(),
entry_point: "vs_main".into(), entry_point: "vs_main".into(),
buffers: vec![Vertex::position_desc().into()], buffers: vec![Vertex::position_desc().into()],
}, },
fragment: None, /* Some(FragmentState { fragment: None,
module: shader,
entry_point: "fs_main".into(),
targets: vec![],
}), */
depth_stencil: Some(wgpu::DepthStencilState { depth_stencil: Some(wgpu::DepthStencilState {
format: wgpu::TextureFormat::Depth32Float, format: wgpu::TextureFormat::Depth32Float,
depth_write_enabled: true, depth_write_enabled: true,
@ -459,6 +464,40 @@ impl Node for ShadowMapsPass {
bias: wgpu::DepthBiasState::default(), bias: wgpu::DepthBiasState::default(),
}), }),
primitive: wgpu::PrimitiveState { primitive: wgpu::PrimitiveState {
//cull_mode: Some(wgpu::Face::Front),
cull_mode: Some(wgpu::Face::Back),
..Default::default()
},
multisample: wgpu::MultisampleState::default(),
multiview: None,
},
));
self.point_light_pipeline = Some(RenderPipeline::create(
&graph.device,
&RenderPipelineDescriptor {
label: Some("pipeline_point_light_shadows".into()),
layouts: vec![bgl, transforms],
push_constant_ranges: vec![],
vertex: VertexState {
module: shader.clone(),
entry_point: "vs_main".into(),
buffers: vec![Vertex::position_desc().into()],
},
fragment: Some(FragmentState {
module: shader,
entry_point: "fs_point_light_main".into(),
targets: vec![],
}),
depth_stencil: Some(wgpu::DepthStencilState {
format: wgpu::TextureFormat::Depth32Float,
depth_write_enabled: true,
depth_compare: wgpu::CompareFunction::Less,
stencil: wgpu::StencilState::default(),
bias: wgpu::DepthBiasState::default(),
}),
primitive: wgpu::PrimitiveState {
//cull_mode: Some(wgpu::Face::Front),
cull_mode: Some(wgpu::Face::Back), cull_mode: Some(wgpu::Face::Back),
..Default::default() ..Default::default()
}, },
@ -477,6 +516,7 @@ impl Node for ShadowMapsPass {
) { ) {
let encoder = context.encoder.as_mut().unwrap(); let encoder = context.encoder.as_mut().unwrap();
let pipeline = self.pipeline.as_ref().unwrap(); let pipeline = self.pipeline.as_ref().unwrap();
let point_light_pipeline = self.point_light_pipeline.as_ref().unwrap();
let render_meshes = self.render_meshes(); let render_meshes = self.render_meshes();
let mesh_buffers = self.mesh_buffers(); let mesh_buffers = self.mesh_buffers();
@ -495,17 +535,15 @@ impl Node for ShadowMapsPass {
stencil_ops: None, stencil_ops: None,
}), }),
}); });
pass.set_pipeline(&pipeline);
for light_depth_map in self.depth_maps.values() { for light_depth_map in self.depth_maps.values() {
match light_depth_map.light_type { match light_depth_map.light_type {
LightType::Directional => { LightType::Directional => {
let frame = atlas.texture_frame(light_depth_map.atlas_index) pass.set_pipeline(&pipeline);
.expect("missing atlas frame of light");
let u_offset = self.light_uniforms_buffer.offset_of(light_depth_map.uniform_index[0]) as u32;
//debug!("Rendering directional light with atlas {} uniform index {} and offset {}, in viewport {:?}", light_depth_map.atlas_index, light_depth_map.uniform_index[0], u_offset, frame); let frame = atlas.texture_frame(light_depth_map.atlas_index)
.expect("missing atlas frame for light");
light_shadow_pass_impl( light_shadow_pass_impl(
&mut pass, &mut pass,
@ -514,17 +552,16 @@ impl Node for ShadowMapsPass {
&mesh_buffers, &mesh_buffers,
&transforms, &transforms,
&frame, &frame,
u_offset, light_depth_map.uniform_index[0] as _,
); );
}, },
LightType::Point => { LightType::Point => {
pass.set_pipeline(&point_light_pipeline);
for side in 0..6 { for side in 0..6 {
let frame = atlas.texture_frame(light_depth_map.atlas_index + side) let frame = atlas.texture_frame(light_depth_map.atlas_index + side)
.expect("missing atlas frame of light"); .expect("missing atlas frame of light");
let ui = light_depth_map.uniform_index[side as usize]; let ui = light_depth_map.uniform_index[side as usize];
let u_offset = self.light_uniforms_buffer.offset_of(ui) as u32;
//debug!("Rendering point light side {side} with atlas {} uniform index {ui} and offset {u_offset} and viewport {:?}", light_depth_map.atlas_index + side, frame);
light_shadow_pass_impl( light_shadow_pass_impl(
&mut pass, &mut pass,
@ -533,7 +570,7 @@ impl Node for ShadowMapsPass {
&mesh_buffers, &mesh_buffers,
&transforms, &transforms,
&frame, &frame,
u_offset, ui as _,
); );
} }
}, },
@ -550,7 +587,7 @@ fn light_shadow_pass_impl<'a>(
mesh_buffers: &'a RenderAssets<MeshBufferStorage>, mesh_buffers: &'a RenderAssets<MeshBufferStorage>,
transforms: &'a TransformBuffers, transforms: &'a TransformBuffers,
shadow_atlas_viewport: &AtlasFrame, shadow_atlas_viewport: &AtlasFrame,
uniform_offset: u32, uniform_index: u32,
) { ) {
// only render to the light's map in the atlas // only render to the light's map in the atlas
pass.set_viewport( pass.set_viewport(
@ -579,7 +616,7 @@ fn light_shadow_pass_impl<'a>(
let buffers = buffers.unwrap(); let buffers = buffers.unwrap();
//let uniform_index = light_uniforms_buffer.offset_of(light_depth_map.uniform_index[0]) as u32; //let uniform_index = light_uniforms_buffer.offset_of(light_depth_map.uniform_index[0]) as u32;
pass.set_bind_group(0, &uniforms_bind_group, &[uniform_offset]); pass.set_bind_group(0, &uniforms_bind_group, &[]);
// Get the bindgroup for job's transform and bind to it using an offset. // Get the bindgroup for job's transform and bind to it using an offset.
let bindgroup = transforms.bind_group(job.transform_id); let bindgroup = transforms.bind_group(job.transform_id);
@ -595,7 +632,7 @@ fn light_shadow_pass_impl<'a>(
buffers.buffer_vertex.buffer().slice(..), buffers.buffer_vertex.buffer().slice(..),
); );
pass.set_index_buffer(indices.buffer().slice(..), *idx_type); pass.set_index_buffer(indices.buffer().slice(..), *idx_type);
pass.draw_indexed(0..indices_len, 0, 0..1); pass.draw_indexed(0..indices_len, 0, uniform_index..uniform_index + 1);
} else { } else {
let vertex_count = buffers.buffer_vertex.count(); let vertex_count = buffers.buffer_vertex.count();
@ -603,7 +640,7 @@ fn light_shadow_pass_impl<'a>(
buffers.buffer_vertex.slot(), buffers.buffer_vertex.slot(),
buffers.buffer_vertex.buffer().slice(..), buffers.buffer_vertex.buffer().slice(..),
); );
pass.draw(0..vertex_count as u32, 0..1); pass.draw(0..vertex_count as u32, uniform_index..uniform_index + 1);
} }
} }
} }
@ -613,6 +650,11 @@ fn light_shadow_pass_impl<'a>(
pub struct LightShadowUniform { pub struct LightShadowUniform {
space_mat: glam::Mat4, space_mat: glam::Mat4,
atlas_frame: AtlasFrame, // 2xUVec2 (4xf32), so no padding needed atlas_frame: AtlasFrame, // 2xUVec2 (4xf32), so no padding needed
near_plane: f32,
far_plane: f32,
_padding1: [u32; 2],
light_pos: glam::Vec3,
_padding2: u32,
} }
/// A component that stores the ID of a shadow map in the shadow map atlas for the entities. /// A component that stores the ID of a shadow map in the shadow map atlas for the entities.
@ -648,8 +690,3 @@ impl LightShadowMapAtlas {
self.0.write().unwrap() self.0.write().unwrap()
} }
} }
/* fn uniform_index_offset(limits: &wgpu::Limits, uniform_idx: u64) -> u32 {
let t = uniform_idx as u32 % (limits.max_storage_buffer_binding_size / mem::size_of::<LightShadowUniform>() as u32);
t * limits.min_uniform_buffer_offset_alignment
} */

View File

@ -23,8 +23,12 @@ struct VertexOutput {
} }
struct TextureAtlasFrame { struct TextureAtlasFrame {
offset: vec2<u32>, /*offset: vec2<u32>,
size: vec2<u32>, size: vec2<u32>,*/
x: u32,
y: u32,
width: u32,
height: u32,
} }
struct TransformData { struct TransformData {
@ -111,11 +115,9 @@ var s_diffuse: sampler;
struct LightShadowMapUniform { struct LightShadowMapUniform {
light_space_matrix: mat4x4<f32>, light_space_matrix: mat4x4<f32>,
atlas_frame: TextureAtlasFrame, atlas_frame: TextureAtlasFrame,
} near_plane: f32,
far_plane: f32,
struct LightShadowMapUniformAligned { light_pos: vec3<f32>,
@align(256)
inner: LightShadowMapUniform
} }
@group(4) @binding(0) @group(4) @binding(0)
@ -130,7 +132,7 @@ var s_shadow_maps_atlas: sampler;
@group(5) @binding(2) @group(5) @binding(2)
var<uniform> u_shadow_maps_atlas_size: vec2<u32>; var<uniform> u_shadow_maps_atlas_size: vec2<u32>;
@group(5) @binding(3) @group(5) @binding(3)
var<storage, read> u_light_shadow: array<LightShadowMapUniformAligned>; var<storage, read> u_light_shadow: array<LightShadowMapUniform>;
@fragment @fragment
fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> { fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
@ -152,21 +154,22 @@ fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
let light_offset = tile.x; let light_offset = tile.x;
let light_count = tile.y; let light_count = tile.y;
let atlas_dimensions: vec2<i32> = textureDimensions(t_shadow_maps_atlas); let atlas_dimensions = textureDimensions(t_shadow_maps_atlas);
for (var i = 0u; i < light_count; i++) { for (var i = 0u; i < light_count; i++) {
let light_index = u_light_indices[light_offset + i]; let light_index = u_light_indices[light_offset + i];
let light: Light = u_lights.data[light_index]; let light: Light = u_lights.data[light_index];
let light_dir = normalize(-light.direction);
if (light.light_ty == LIGHT_TY_DIRECTIONAL) { if (light.light_ty == LIGHT_TY_DIRECTIONAL) {
let light_dir = normalize(-light.direction); let shadow_u: LightShadowMapUniform = u_light_shadow[light.light_shadow_uniform_index[0]];
let shadow_u: LightShadowMapUniform = u_light_shadow[light.light_shadow_uniform_index[0]].inner;
let frag_pos_light_space = shadow_u.light_space_matrix * vec4<f32>(in.world_position, 1.0); let frag_pos_light_space = shadow_u.light_space_matrix * vec4<f32>(in.world_position, 1.0);
let shadow = calc_shadow_dir_light(in.world_normal, light_dir, frag_pos_light_space, atlas_dimensions, shadow_u.atlas_frame); let shadow = calc_shadow_dir_light(in.world_normal, light_dir, frag_pos_light_space, atlas_dimensions, shadow_u.atlas_frame);
light_res += blinn_phong_dir_light(in.world_position, in.world_normal, light, u_material, specular_color, shadow); light_res += blinn_phong_dir_light(in.world_position, in.world_normal, light, u_material, specular_color, shadow);
} else if (light.light_ty == LIGHT_TY_POINT) { } else if (light.light_ty == LIGHT_TY_POINT) {
light_res += blinn_phong_point_light(in.world_position, in.world_normal, light, u_material, specular_color); let shadow = calc_shadow_point(in.world_position, in.world_normal, light_dir, light, atlas_dimensions);
light_res += blinn_phong_point_light(in.world_position, in.world_normal, light, u_material, specular_color, shadow);
} else if (light.light_ty == LIGHT_TY_SPOT) { } else if (light.light_ty == LIGHT_TY_SPOT) {
light_res += blinn_phong_spot_light(in.world_position, in.world_normal, light, u_material, specular_color); light_res += blinn_phong_spot_light(in.world_position, in.world_normal, light, u_material, specular_color);
} }
@ -176,9 +179,70 @@ fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
return vec4<f32>(light_object_res, object_color.a); return vec4<f32>(light_object_res, object_color.a);
} }
/// Get the cube map side index of a 3d texture coord
///
/// 0 -> UNKNOWN
/// 1 -> right
/// 2 -> left
/// 3 -> top
/// 4 -> bottom
/// 5 -> near
/// 6 -> far
fn get_side_idx(tex_coord: vec3<f32>) -> vec3<f32> {
let abs_x = abs(tex_coord.x);
let abs_y = abs(tex_coord.y);
let abs_z = abs(tex_coord.z);
var major_axis: f32 = 0.0;
var cube_idx: i32 = 0;
var res = vec2<f32>(0.0);
// Determine the dominant axis
if (abs_x >= abs_y && abs_x >= abs_z) {
major_axis = tex_coord.x;
if (tex_coord.x > 0.0) {
cube_idx = 1;
res = vec2<f32>(-tex_coord.z, -tex_coord.y);
} else {
cube_idx = 2;
res = vec2<f32>(tex_coord.z, -tex_coord.y);
}
} else if (abs_y >= abs_x && abs_y >= abs_z) {
major_axis = tex_coord.y;
if (tex_coord.y > 0.0) {
cube_idx = 3;
res = vec2<f32>(tex_coord.x, tex_coord.z);
} else {
cube_idx = 4;
res = vec2<f32>(tex_coord.x, -tex_coord.z);
}
} else {
major_axis = tex_coord.z;
if (tex_coord.z > 0.0) {
cube_idx = 5;
res = vec2<f32>(tex_coord.x, -tex_coord.y);
} else {
cube_idx = 6;
res = vec2<f32>(-tex_coord.x, -tex_coord.y);
}
}
res = (res / abs(major_axis) + 1.0) * 0.5;
//res = normalize(res);
//res.y = 1.0-res.y; // invert y because wgsl
//let t = res.x;
//res.x = res.y;
//res.y = 1.0 - t;
res.y = 1.0 - res.y;
//res.x = 1.0 - res.x;
return vec3<f32>(res, f32(cube_idx));
}
fn calc_shadow_dir_light(normal: vec3<f32>, light_dir: vec3<f32>, frag_pos_light_space: vec4<f32>, atlas_dimensions: vec2<i32>, atlas_region: TextureAtlasFrame) -> f32 { fn calc_shadow_dir_light(normal: vec3<f32>, light_dir: vec3<f32>, frag_pos_light_space: vec4<f32>, atlas_dimensions: vec2<i32>, atlas_region: TextureAtlasFrame) -> f32 {
var proj_coords = frag_pos_light_space.xyz / frag_pos_light_space.w; var proj_coords = frag_pos_light_space.xyz / frag_pos_light_space.w;
// for some reason the y component is clipped after transforming // for some reason the y component is flipped after transforming
proj_coords.y = -proj_coords.y; proj_coords.y = -proj_coords.y;
// dont cast shadows outside the light's far plane // dont cast shadows outside the light's far plane
@ -190,8 +254,8 @@ fn calc_shadow_dir_light(normal: vec3<f32>, light_dir: vec3<f32>, frag_pos_light
let xy_remapped = proj_coords.xy * 0.5 + 0.5; let xy_remapped = proj_coords.xy * 0.5 + 0.5;
// no need to get the y since the maps are square // no need to get the y since the maps are square
let atlas_start = f32(atlas_region.offset.x) / f32(atlas_dimensions.x); let atlas_start = f32(atlas_region.x) / f32(atlas_dimensions.x);
let atlas_end = f32(atlas_region.offset.x + atlas_region.size.x) / f32(atlas_dimensions.x); let atlas_end = f32(atlas_region.x + atlas_region.width) / f32(atlas_dimensions.x);
// lerp the tex coords to the shadow map for this light. // lerp the tex coords to the shadow map for this light.
proj_coords.x = mix(atlas_start, atlas_end, xy_remapped.x); proj_coords.x = mix(atlas_start, atlas_end, xy_remapped.x);
proj_coords.y = mix(atlas_start, atlas_end, xy_remapped.y); proj_coords.y = mix(atlas_start, atlas_end, xy_remapped.y);
@ -204,7 +268,7 @@ fn calc_shadow_dir_light(normal: vec3<f32>, light_dir: vec3<f32>, frag_pos_light
// must manually apply offset to the texture coords since `textureSampleLevel` requires a // must manually apply offset to the texture coords since `textureSampleLevel` requires a
// const value. // const value.
let offset_coords = proj_coords.xy + (vec2<f32>(atlas_region.offset) / vec2<f32>(atlas_dimensions)); let offset_coords = proj_coords.xy + (vec2<f32>(f32(atlas_region.x), f32(atlas_region.y)) / vec2<f32>(atlas_dimensions));
let closest_depth = textureSampleLevel(t_shadow_maps_atlas, s_shadow_maps_atlas, offset_coords, 0.0); let closest_depth = textureSampleLevel(t_shadow_maps_atlas, s_shadow_maps_atlas, offset_coords, 0.0);
let current_depth = proj_coords.z; let current_depth = proj_coords.z;
@ -218,10 +282,52 @@ fn calc_shadow_dir_light(normal: vec3<f32>, light_dir: vec3<f32>, frag_pos_light
return shadow; return shadow;
} }
fn calc_shadow_point(world_pos: vec3<f32>, atlas_dimensions: vec2<i32>, atlas_regions: array<TextureAtlasFrame, 6>) -> f32 { fn calc_shadow_point(world_pos: vec3<f32>, world_normal: vec3<f32>, light_dir: vec3<f32>, light: Light, atlas_dimensions: vec2<i32>) -> f32 {
var frag_to_light = world_pos - light.position;
let temp = get_side_idx(normalize(frag_to_light));
var coords_2d = temp.xy;
let cube_idx = i32(temp.z);
/// if an unknown cube side was returned, something is broken
if cube_idx == 0 {
return 0.0; return 0.0;
} }
var indices = light.light_shadow_uniform_index;
let i = indices[cube_idx - 1];
let u: LightShadowMapUniform = u_light_shadow[i];
// get the atlas frame in [0; 1] in the atlas texture
// z is width, w is height
var region_coords = vec4<f32>(f32(u.atlas_frame.x), f32(u.atlas_frame.y), f32(u.atlas_frame.width), f32(u.atlas_frame.height));
region_coords /= f32(atlas_dimensions.x);
// simulate `ClampToBorder`, not creating shadows past the shadow map regions
if (coords_2d.x >= 1.0 || coords_2d.y >= 1.0) {
return 0.0;
}
// get the coords inside of the region
coords_2d.x = mix(region_coords.x, region_coords.x + region_coords.z, coords_2d.x);
coords_2d.y = mix(region_coords.y, region_coords.y + region_coords.w, coords_2d.y);
var closest_depth = textureSampleLevel(t_shadow_maps_atlas, s_shadow_maps_atlas, coords_2d, 0.0);
let current_depth = length(frag_to_light);
// convert depth from [0; 1] to the original depth value
closest_depth *= u.far_plane;
// use a bias to avoid shadow acne
let bias = max(0.05 * (1.0 - dot(world_normal, light_dir)), 0.005);
var shadow = 0.0;
if current_depth - bias > closest_depth {
shadow = 1.0;
}
return shadow;
}
fn debug_grid(in: VertexOutput) -> vec4<f32> { fn debug_grid(in: VertexOutput) -> vec4<f32> {
let tile_index_float: vec2<f32> = in.clip_position.xy / 16.0; let tile_index_float: vec2<f32> = in.clip_position.xy / 16.0;
let tile_index = vec2<u32>(floor(tile_index_float)); let tile_index = vec2<u32>(floor(tile_index_float));
@ -266,7 +372,7 @@ fn blinn_phong_dir_light(world_pos: vec3<f32>, world_norm: vec3<f32>, dir_light:
return (ambient_color + (1.0 - shadow) * (diffuse_color + specular_color)) * dir_light.intensity; return (ambient_color + (1.0 - shadow) * (diffuse_color + specular_color)) * dir_light.intensity;
} }
fn blinn_phong_point_light(world_pos: vec3<f32>, world_norm: vec3<f32>, point_light: Light, material: Material, specular_factor: vec3<f32>) -> vec3<f32> { fn blinn_phong_point_light(world_pos: vec3<f32>, world_norm: vec3<f32>, point_light: Light, material: Material, specular_factor: vec3<f32>, shadow: f32) -> vec3<f32> {
let light_color = point_light.color.xyz; let light_color = point_light.color.xyz;
let light_pos = point_light.position.xyz; let light_pos = point_light.position.xyz;
let camera_view_pos = u_camera.position; let camera_view_pos = u_camera.position;
@ -296,7 +402,7 @@ fn blinn_phong_point_light(world_pos: vec3<f32>, world_norm: vec3<f32>, point_li
diffuse_color *= attenuation; diffuse_color *= attenuation;
specular_color *= attenuation; specular_color *= attenuation;
return (ambient_color + diffuse_color + specular_color) * point_light.intensity; return (ambient_color + (1.0 - shadow) * (diffuse_color + specular_color)) * point_light.intensity;
} }
fn blinn_phong_spot_light(world_pos: vec3<f32>, world_norm: vec3<f32>, spot_light: Light, material: Material, specular_factor: vec3<f32>) -> vec3<f32> { fn blinn_phong_spot_light(world_pos: vec3<f32>, world_norm: vec3<f32>, spot_light: Light, material: Material, specular_factor: vec3<f32>) -> vec3<f32> {

View File

@ -11,23 +11,54 @@ struct TextureAtlasFrame {
struct LightShadowMapUniform { struct LightShadowMapUniform {
light_space_matrix: mat4x4<f32>, light_space_matrix: mat4x4<f32>,
atlas_frame: TextureAtlasFrame, atlas_frame: TextureAtlasFrame,
near_plane: f32,
far_plane: f32,
light_pos: vec3<f32>,
} }
@group(0) @binding(0) @group(0) @binding(0)
var<storage, read> u_light_shadow: LightShadowMapUniform; var<storage, read> u_light_shadow: array<LightShadowMapUniform>;
/*@group(0) @binding(1)
var<uniform> u_light_pos: vec3<f32>;
@group(0) @binding(2)
var<uniform> u_light_far_plane: f32;*/
@group(1) @binding(0) @group(1) @binding(0)
var<uniform> u_model_transform_data: TransformData; var<uniform> u_model_transform_data: TransformData;
struct VertexOutput { struct VertexOutput {
@builtin(position) @builtin(position)
clip_position: vec4<f32>, clip_position: vec4<f32>,
@location(0) world_pos: vec3<f32>,
@location(1) instance_index: u32,
} }
@vertex @vertex
fn vs_main( fn vs_main(
@location(0) position: vec3<f32> @location(0) position: vec3<f32>,
@builtin(instance_index) instance_index: u32,
) -> VertexOutput { ) -> VertexOutput {
let pos = u_light_shadow.light_space_matrix * u_model_transform_data.transform * vec4<f32>(position, 1.0); let world_pos = u_model_transform_data.transform * vec4<f32>(position, 1.0);
return VertexOutput(pos); let pos = u_light_shadow[instance_index].light_space_matrix * world_pos;
return VertexOutput(pos, world_pos.xyz, instance_index);
}
struct FragmentOutput {
@builtin(frag_depth) depth: f32,
}
/// Fragment shader used for point lights (or other perspective lights) to create linear depth
@fragment
fn fs_point_light_main(
in: VertexOutput
) -> FragmentOutput {
let u = u_light_shadow[in.instance_index];
var light_dis = length(in.world_pos - u.light_pos);
// map to [0; 1] range by dividing by far plane
light_dis = light_dis / u.far_plane;
return FragmentOutput(light_dis);
} }

View File

@ -54,19 +54,11 @@ impl<T: bytemuck::Pod + bytemuck::Zeroable> GpuSlotBuffer<T> {
/// Calculates the byte offset in the buffer of the element at `i`. /// Calculates the byte offset in the buffer of the element at `i`.
pub fn offset_of(&self, i: u64) -> u64 { pub fn offset_of(&self, i: u64) -> u64 {
/* let offset = i * mem::size_of::<T>() as u64;
if let Some(align) = self.alignment {
round_mult::up(offset, NonZeroU64::new(align).unwrap()).unwrap()
} else {
offset
} */
if let Some(align) = self.alignment { if let Some(align) = self.alignment {
let transform_index = i % self.capacity; let transform_index = i % self.capacity;
transform_index * align transform_index * align
} else { } else {
mem::size_of::<T>() as u64 i * mem::size_of::<T>() as u64
} }
} }