Implement spot lights and directional lights

This commit is contained in:
SeanOMik 2023-11-19 13:19:35 -05:00
parent e412e589d1
commit 104649d574
Signed by: SeanOMik
GPG Key ID: 568F326C7EB33ACB
8 changed files with 423 additions and 75 deletions

View File

@ -12,6 +12,7 @@ use lyra_engine::{
#[derive(Clone, Component)]
pub struct FreeFlyCamera {
pub speed: f32,
pub slow_speed_factor: f32,
pub look_speed: f32,
pub mouse_sensitivity: f32,
pub look_with_keys: bool,
@ -21,6 +22,7 @@ impl Default for FreeFlyCamera {
fn default() -> Self {
Self {
speed: 4.0,
slow_speed_factor: 0.25,
look_speed: 0.09,
mouse_sensitivity: 0.4,
look_with_keys: false,
@ -29,9 +31,10 @@ impl Default for FreeFlyCamera {
}
impl FreeFlyCamera {
pub fn new(speed: f32, look_speed: f32, mouse_sensitivity: f32, look_with_keys: bool) -> Self {
pub fn new(speed: f32, slow_speed_factor: f32, look_speed: f32, mouse_sensitivity: f32, look_with_keys: bool) -> Self {
Self {
speed,
slow_speed_factor,
look_speed,
mouse_sensitivity,
look_with_keys,
@ -117,7 +120,13 @@ impl SimpleSystem for FreeFlyCameraPlugin {
}
if velocity != Vec3::ZERO {
cam.transform.translation += velocity.normalize() * fly.speed * delta_time;
let temp = if keys.is_pressed(KeyCode::E) {
fly.speed * delta_time * fly.slow_speed_factor
} else {
fly.speed * delta_time
};
cam.transform.translation += velocity.normalize() * temp;
}
}

View File

@ -1,4 +1,4 @@
use lyra_engine::{math::{self, Vec3}, ecs::{World, components::{transform::TransformComponent, camera::CameraComponent, model::ModelComponent, DeltaTime}, EventQueue, SimpleSystem, Component, Criteria, CriteriaSchedule, BatchedSystem}, math::Transform, input::{KeyCode, InputButtons, MouseMotion, ActionHandler, Layout, Action, ActionKind, LayoutId, ActionMapping, Binding, ActionSource, ActionMappingId, InputActionPlugin, ActionState}, game::Game, plugin::Plugin, render::{window::{CursorGrabMode, WindowOptions}, light::PointLight}, change_tracker::Ct};
use lyra_engine::{math::{self, Vec3}, ecs::{World, components::{transform::TransformComponent, camera::CameraComponent, model::ModelComponent, DeltaTime}, EventQueue, SimpleSystem, Component, Criteria, CriteriaSchedule, BatchedSystem}, math::Transform, input::{KeyCode, InputButtons, MouseMotion, ActionHandler, Layout, Action, ActionKind, LayoutId, ActionMapping, Binding, ActionSource, ActionMappingId, InputActionPlugin, ActionState}, game::Game, plugin::Plugin, render::{window::{CursorGrabMode, WindowOptions}, light::{PointLight, directional::DirectionalLight, SpotLight}}, change_tracker::Ct};
use lyra_engine::assets::{ResourceManager, Model};
mod free_fly_camera;
@ -77,65 +77,106 @@ async fn main() {
let crate_model = resman.request::<Model>("assets/crate/crate.gltf").unwrap();
drop(resman);
/* world.spawn((
ModelComponent(cube_model.clone()),
TransformComponent::from(Transform::from_xyz(3.0, 0.5, -2.2)),
)); */
world.spawn((
ModelComponent(antique_camera_model),
TransformComponent::from(Transform::from_xyz(0.0, -5.0, -10.0)),
));
/* let light = PointLight {
color: Vec3::new(1.0, 1.0, 1.0),
position: Vec3::new(0.0, -5.0, -8.0),
constant: 1.0,
linear: 0.09,
quadratic: 0.032,
};
world.spawn((light,)); */
let mut cube_tran = Transform::from_xyz(-3.5, 0.0, -7.0);
cube_tran.rotate_y(math::Angle::Degrees(180.0));
world.spawn((
/* PointLight {
color: Vec3::new(1.0, 1.0, 1.0),
intensity: 1.0,
constant: 1.0,
linear: 0.045,
quadratic: 0.0075,
}, */
TransformComponent::from(cube_tran),
ModelComponent(crate_model.clone()),
CubeFlag,
));
{
let mut cube_tran = Transform::from_xyz(-3.5, 0.0, -8.0);
//cube_tran.rotate_y(math::Angle::Degrees(180.0));
world.spawn((
TransformComponent::from(cube_tran),
ModelComponent(crate_model.clone()),
CubeFlag,
));
}
let mut light_tran = Transform::from_xyz(1.5, 2.5, -8.5);
light_tran.scale = Vec3::new(0.5, 0.5, 0.5);
world.spawn((
PointLight {
color: Vec3::new(1.0, 1.0, 1.0), //Vec3::new(0.361, 0.984, 0.0),
intensity: 1.2,
/* constant: 1.0,
linear: 0.045,
quadratic: 0.0075, */
{
let mut light_tran = Transform::from_xyz(1.5, 2.5, 0.0);
light_tran.scale = Vec3::new(0.5, 0.5, 0.5);
light_tran.rotate_x(math::Angle::Degrees(-45.0));
light_tran.rotate_y(math::Angle::Degrees(25.0));
world.spawn((
DirectionalLight {
color: Vec3::new(1.0, 1.0, 1.0),
ambient: 0.3,
diffuse: 1.0,
specular: 1.3,
},
TransformComponent::from(light_tran),
ModelComponent(cube_model.clone()),
));
}
constant: 1.0,
linear: 0.09,
quadratic: 0.032,
ambient: 0.3,
diffuse: 1.0,
specular: 1.3,
},
TransformComponent::from(light_tran),
ModelComponent(cube_model),
));
{
let mut light_tran = Transform::from_xyz(-3.5, 0.2, -4.5);
light_tran.scale = Vec3::new(0.5, 0.5, 0.5);
world.spawn((
SpotLight {
color: Vec3::new(1.0, 0.2, 0.2),
cutoff: math::Angle::Degrees(12.5),
outer_cutoff: math::Angle::Degrees(17.5),
constant: 1.0,
linear: 0.007,
quadratic: 0.0002,
ambient: 0.0,
diffuse: 7.0,
specular: 1.0,
},
TransformComponent::from(light_tran),
ModelComponent(cube_model.clone()),
));
}
/* {
let mut light_tran = Transform::from_xyz(-5.0, 2.5, -9.5);
light_tran.scale = Vec3::new(0.5, 0.5, 0.5);
world.spawn((
PointLight {
color: Vec3::new(1.0, 1.0, 1.0),
intensity: 1.0,
constant: 1.0,
linear: 0.045,
quadratic: 0.0075,
ambient: 0.1,
diffuse: 1.0,
specular: 1.3,
},
TransformComponent::from(light_tran),
ModelComponent(cube_model.clone()),
));
} */
{
let mut light_tran = Transform::from_xyz(2.0, 2.5, -9.5);
light_tran.scale = Vec3::new(0.5, 0.5, 0.5);
world.spawn((
PointLight {
color: Vec3::new(0.0, 0.0, 1.0),
intensity: 3.3,
constant: 1.0,
linear: 0.09,
quadratic: 0.032,
ambient: 0.2,
diffuse: 1.0,
specular: 1.3,
},
TransformComponent::from(light_tran),
ModelComponent(cube_model),
));
}
let mut camera = CameraComponent::new_3d();
camera.transform.translation += math::Vec3::new(0.0, 0.0, 7.5);
//camera.transform.rotate_y(Angle::Degrees(-25.0));
//camera.transform.rotate_z(math::Angle::Degrees(-90.0));
camera.transform.translation += math::Vec3::new(0.0, 0.0, 5.5);
world.spawn(( camera, FreeFlyCamera::default() ));
Ok(())
@ -156,7 +197,7 @@ async fn main() {
};
let spin_system = |world: &mut World| -> anyhow::Result<()> {
const SPEED: f32 = 7.0;
const SPEED: f32 = 4.0;
let delta_time = **world.get_resource::<DeltaTime>().unwrap();
for (transform, _) in world.query_mut::<(&mut TransformComponent, &CubeFlag)>().iter_mut() {
@ -164,6 +205,11 @@ async fn main() {
t.rotate_y(math::Angle::Degrees(SPEED * delta_time));
}
/* for (transform, s) in world.query_mut::<(&mut TransformComponent, &mut SpotLight)>().iter_mut() {
let t = &mut transform.transform;
t.rotate_x(math::Angle::Degrees(SPEED * delta_time));
} */
Ok(())
};

View File

@ -10,7 +10,7 @@ pub fn radians_to_degrees(radians: f32) -> f32 {
radians * 180.0 / PI
}
#[derive(Clone)]
#[derive(Clone, Debug)]
pub enum Angle {
Degrees(f32),
Radians(f32),
@ -34,4 +34,38 @@ impl Angle {
Self::Radians(r) => radians_to_degrees(r),
}
}
}
impl std::ops::Add for Angle {
type Output = Angle;
fn add(self, rhs: Self) -> Self::Output {
Angle::Radians(self.to_radians() + rhs.to_radians())
}
}
impl std::ops::AddAssign for Angle {
fn add_assign(&mut self, rhs: Self) {
match self {
Angle::Degrees(d) => *d += rhs.to_degrees(),
Angle::Radians(r) => *r += rhs.to_radians(),
}
}
}
impl std::ops::Sub for Angle {
type Output = Angle;
fn sub(self, rhs: Self) -> Self::Output {
Angle::Radians(self.to_radians() - rhs.to_radians())
}
}
impl std::ops::SubAssign for Angle {
fn sub_assign(&mut self, rhs: Self) {
match self {
Angle::Degrees(d) => *d -= rhs.to_degrees(),
Angle::Radians(r) => *r -= rhs.to_radians(),
}
}
}

View File

@ -1,10 +1,9 @@
#[repr(C)]
#[derive(Default, Debug, Copy, Clone, edict::Component)]
#[derive(Default, Debug, Clone, edict::Component)]
pub struct DirectionalLight {
pub direction: glam::Quat,
//pub direction: glam::Quat,
pub color: glam::Vec3,
pub ambient: glam::Vec3,
pub diffuse: glam::Vec3,
pub specular: glam::Vec3,
pub ambient: f32,
pub diffuse: f32,
pub specular: f32,
}

View File

@ -1,19 +1,27 @@
pub mod point;
pub mod directional;
pub mod spotlight;
pub use point::*;
pub use directional::*;
pub use spotlight::*;
use std::{collections::{VecDeque, HashMap}, num::{NonZeroU64, NonZeroU32}, marker::PhantomData};
use edict::query::EpochOf;
pub use point::*;
use tracing::debug;
use tracing::{debug, Instrument};
use wgpu::util::DeviceExt;
use std::mem;
use crate::{math::Transform, ecs::components::TransformComponent};
use self::directional::DirectionalLight;
const MAX_LIGHT_COUNT: usize = 16;
/// A struct that stores a list of lights in a wgpu::Buffer.
pub struct LightBuffer<U: Default + bytemuck::Pod + bytemuck::Zeroable> {
_phantom: PhantomData<U>,
/// The max amount of light casters that could fit in this buffer.
@ -102,15 +110,16 @@ pub struct LightUniformBuffers {
pub bindgroup: wgpu::BindGroup,
pub lights_uniform: LightsUniform,
pub point_lights: LightBuffer<PointLightUniform>,
pub spot_lights: LightBuffer<SpotLightUniform>,
}
impl LightUniformBuffers {
pub fn new(device: &wgpu::Device) -> Self {
let buffer = device.create_buffer(
&wgpu::BufferDescriptor {
label: Some("UB_Lights"),
label: Some("UBO_Lights"),
usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST,
size: (mem::size_of::<LightsUniform>() * MAX_LIGHT_COUNT) as u64,
size: mem::size_of::<LightsUniform>() as u64,
mapped_at_creation: false,
}
);
@ -149,6 +158,7 @@ impl LightUniformBuffers {
});
let point_lights = LightBuffer::new(&bindgroup_layout, MAX_LIGHT_COUNT);
let spot_lights = LightBuffer::new(&bindgroup_layout, MAX_LIGHT_COUNT);
Self {
buffer,
@ -156,6 +166,7 @@ impl LightUniformBuffers {
bindgroup,
lights_uniform: LightsUniform::default(),
point_lights,
spot_lights,
}
}
@ -166,10 +177,29 @@ impl LightUniformBuffers {
if !self.point_lights.has_light(entity) || light_epoch == world_epoch || transform_epoch == world_epoch {
let uniform = PointLightUniform::from_bundle(point_light, &transform.transform);
self.point_lights.update_or_add(&mut self.lights_uniform.point_lights, entity, uniform);
debug!("Updated point light");
}
}
for (entity, spot_light, transform, light_epoch, transform_epoch)
in world.query::<(edict::Entities, &SpotLight, &TransformComponent, EpochOf<SpotLight>, EpochOf<TransformComponent>)>().iter() {
if !self.spot_lights.has_light(entity) || light_epoch == world_epoch || transform_epoch == world_epoch {
let uniform = SpotLightUniform::from_bundle(spot_light, &transform.transform);
self.spot_lights.update_or_add(&mut self.lights_uniform.spot_lights, entity, uniform);
//debug!("Updated spot light");
}
}
if let Some((dir_light, transform)) =
world.query::<(&DirectionalLight, &TransformComponent)>().iter().next() {
let uniform = DirectionalLightUniform::from_bundle(dir_light, &transform.transform);
self.lights_uniform.directional_light = uniform;
}
self.lights_uniform.point_light_count = self.point_lights.buffer_count as u32;
self.lights_uniform.spot_light_count = self.spot_lights.buffer_count as u32;
queue.write_buffer(&self.buffer, 0, bytemuck::cast_slice(&[self.lights_uniform]));
}
}
@ -180,6 +210,10 @@ pub struct LightsUniform {
point_lights: [PointLightUniform; MAX_LIGHT_COUNT],
point_light_count: u32,
_padding: [u32; 3],
spot_lights: [SpotLightUniform; MAX_LIGHT_COUNT],
spot_light_count: u32,
_padding2: [u32; 3],
directional_light: DirectionalLightUniform,
}
#[repr(C)]
@ -188,17 +222,22 @@ pub struct PointLightUniform {
/// The position of the light
/// vec4 is used here for gpu padding, w is ignored in the shader
pub position: glam::Vec4,
/// The color of the light
/// vec4 is used here for gpu padding, w is ignored in the shader
pub color: glam::Vec4,
/// The intensity of the light
/// This works by just multiplying the result of the lighting
/// calculations by this scalar
pub intensity: f32,
/// The constant used in the quadratic attenuation calculation. Its best to leave this at 1.0
pub constant: f32,
/// The linear factor used in the quadratic attenuation calculation.
pub linear: f32,
/// The quadratic factor used in the quadratic attenuation calculation.
pub quadratic: f32,
@ -229,4 +268,93 @@ impl PointLightUniform {
_padding: 0,
}
}
}
#[repr(C)]
#[derive(Default, Debug, Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
pub struct DirectionalLightUniform {
/// The direction of the light
pub direction: glam::Vec3,
// gpu padding
pub _padding: u32,
/// The color of the light
pub color: glam::Vec3,
// no padding is needed here since ambient acts as the padding
// that would usually be needed for the vec3
/// The scalar of the ambient light created by this caster.
pub ambient: f32,
/// The scalar of the diffuse light created by this caster.
pub diffuse: f32,
/// The scalar of the specular reflections created by this caster.
pub specular: f32,
pub _padding2: [u32; 2],
}
impl DirectionalLightUniform {
/// Create the DirectionalLightUniform from an ECS bundle
pub fn from_bundle(light: &DirectionalLight, transform: &Transform) -> Self {
//transform.forward()
Self {
direction: transform.forward(),
_padding: 0,
color: light.color,
ambient: light.ambient,
diffuse: light.diffuse,
specular: light.specular,
_padding2: [0; 2],
}
}
}
#[repr(C)]
#[derive(Default, Debug, Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
struct SpotLightUniform {
pub position: glam::Vec3,
pub _padding: u32,
pub direction: glam::Vec3,
pub _padding2: u32,
pub color: glam::Vec3,
// no padding is needed here since cutoff acts as the padding
// that would usually be needed for the vec3
pub cutoff: f32,
pub outer_cutoff: f32,
/// The constant used in the quadratic attenuation calculation. Its best to leave this at 1.0
pub constant: f32,
/// The linear factor used in the quadratic attenuation calculation.
pub linear: f32,
/// The quadratic factor used in the quadratic attenuation calculation.
pub quadratic: f32,
pub ambient: f32,
pub diffuse: f32,
pub specular: f32,
pub _padding3: u32,
}
impl SpotLightUniform {
/// Create the SpotLightUniform from an ECS bundle
pub fn from_bundle(light: &SpotLight, transform: &Transform) -> Self {
Self {
position: transform.translation,
_padding: 0,
direction: transform.forward(),
_padding2: 0,
color: light.color,
cutoff: light.cutoff.to_radians().cos(),
outer_cutoff: light.outer_cutoff.to_radians().cos(),
constant: light.constant,
linear: light.linear,
quadratic: light.quadratic,
ambient: light.ambient,
diffuse: light.diffuse,
specular: light.specular,
_padding3: 0,
}
}
}

View File

@ -1,5 +1,4 @@
#[repr(C)]
#[derive(Default, Debug, Copy, Clone, edict::Component)]
#[derive(Default, Debug, Clone, edict::Component)]
pub struct PointLight {
pub color: glam::Vec3,
pub intensity: f32,

View File

@ -0,0 +1,16 @@
use crate::math;
#[derive(Debug, Clone, edict::Component)]
pub struct SpotLight {
pub color: glam::Vec3,
pub cutoff: math::Angle,
pub outer_cutoff: math::Angle,
pub constant: f32,
pub linear: f32,
pub quadratic: f32,
pub ambient: f32,
pub diffuse: f32,
pub specular: f32,
}

View File

@ -40,9 +40,38 @@ struct PointLight {
specular: f32,
};
struct DirectionalLight {
direction: vec3<f32>,
color: vec3<f32>,
ambient: f32,
diffuse: f32,
specular: f32,
};
struct SpotLight {
position: vec3<f32>,
direction: vec3<f32>,
color: vec3<f32>,
cutoff: f32,
outer_cutoff: f32,
constant: f32,
linear: f32,
quadratic: f32,
ambient: f32,
diffuse: f32,
specular: f32,
};
struct Lights {
point_lights: array<PointLight, max_light_count>,
point_light_count: u32,
spot_lights: array<SpotLight, max_light_count>,
spot_light_count: u32,
directional_light: DirectionalLight,
}
@group(1) @binding(0)
@ -110,22 +139,59 @@ fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
let object_color: vec4<f32> = textureSample(t_diffuse, s_diffuse, in.tex_coords);
let specular_color: vec3<f32> = textureSample(t_specular, s_specular, in.tex_coords).xyz;
var light_res = vec3<f32>(0.0);
// this needs to be 0.0 for the math
//u_lights.directional_light.direction.w = 0.0;
var light_res = blinn_phong_dir_light(in.world_position, in.world_normal, u_lights.directional_light, u_material, specular_color);
for (var i = 0u; i < u_lights.point_light_count; i++) {
light_res += blinn_phong_point_light(in.world_position, in.world_normal, u_lights.point_lights[i], u_material, specular_color);
}
for (var i = 0u; i < u_lights.spot_light_count; i++) {
light_res += blinn_phong_spot_light(in.world_position, in.world_normal, u_lights.spot_lights[i], u_material, specular_color);
}
let light_object_res = light_res * (object_color.xyz/* * u_material.diffuse.xyz*/);
return vec4<f32>(light_object_res, object_color.a);
}
fn blinn_phong_dir_light(world_pos: vec3<f32>, world_norm: vec3<f32>, dir_light: DirectionalLight, material: Material, specular_factor: vec3<f32>) -> vec3<f32> {
let light_color = dir_light.color.xyz;
let camera_view_pos = u_camera.view_pos.xyz;
//// Ambient light ////
var ambient_color = light_color * material.ambient.xyz * material.diffuse.xyz;
//// diffuse ////
let light_dir = normalize(-dir_light.direction);
let diffuse_strength = max(dot(world_norm, light_dir), 0.0);
var diffuse_color = light_color * (diffuse_strength * material.diffuse.xyz);
//// end of diffuse ////
//// specular ////
let view_dir = normalize(camera_view_pos - world_pos);
let half_dir = normalize(view_dir + light_dir);
let specular_strength = pow(max(dot(world_norm, half_dir), 0.0), material.shininess);
var specular_color = specular_strength * (light_color * specular_factor);
//// end of specular ////
ambient_color *= dir_light.ambient;
diffuse_color *= dir_light.diffuse;
specular_color *= dir_light.specular;
return ambient_color + diffuse_color + specular_color;
}
fn blinn_phong_point_light(world_pos: vec3<f32>, world_norm: vec3<f32>, point_light: PointLight, material: Material, specular_factor: vec3<f32>) -> vec3<f32> {
let light_color = point_light.color.xyz;
let light_pos = point_light.position.xyz;
let camera_view_pos = u_camera.view_pos.xyz;
// We don't need (or want) much ambient light, so 0.1 is fine
//let ambient_strength = 0.1;
//// Ambient light ////
var ambient_color = light_color * material.ambient.xyz * material.diffuse.xyz;
//// diffuse ////
@ -146,18 +212,69 @@ fn blinn_phong_point_light(world_pos: vec3<f32>, world_norm: vec3<f32>, point_li
//// end of specular ////
//// point light attenuation ////
/*let distance = length(light_pos - world_pos);
let distance = length(light_pos - world_pos);
let attenuation = 1.0 / (point_light.constant + point_light.linear * distance +
point_light.quadratic * (distance * distance));*/
point_light.quadratic * (distance * distance));
//ambient_color *= attenuation * point_light.intensity * point_light.ambient;
//diffuse_color *= attenuation * point_light.intensity * point_light.diffuse;
//specular_color *= attenuation * point_light.intensity * point_light.specular;
//// end of point light attenuation ////
ambient_color *= point_light.ambient;
diffuse_color *= point_light.diffuse;
specular_color *= point_light.specular;
ambient_color *= point_light.ambient * attenuation;
diffuse_color *= point_light.diffuse * attenuation;
specular_color *= point_light.specular * attenuation;
return (ambient_color + diffuse_color + specular_color) * /*attenuation * */ point_light.intensity;
return (ambient_color + diffuse_color + specular_color) * point_light.intensity;
}
fn blinn_phong_spot_light(world_pos: vec3<f32>, world_norm: vec3<f32>, spot_light: SpotLight, material: Material, specular_factor: vec3<f32>) -> vec3<f32> {
let light_color = spot_light.color;//.xyz;
let light_pos = spot_light.position.xyz;
let camera_view_pos = u_camera.view_pos.xyz;
let light_dir = normalize(spot_light.position - world_pos);
//if (theta > spot_light.cutoff) {
var ambient_color = light_color * material.ambient.xyz * material.diffuse.xyz;
//// diffuse ////
//let light_dir = normalize(light_pos - world_pos);
let diffuse_strength = max(dot(world_norm, light_dir), 0.0);
var diffuse_color = light_color * (diffuse_strength * material.diffuse.xyz);
//// end of diffuse ////
//// specular ////
let view_dir = normalize(camera_view_pos - world_pos);
let half_dir = normalize(view_dir + light_dir);
let specular_strength = pow(max(dot(world_norm, half_dir), 0.0), material.shininess);
var specular_color = specular_strength * (light_color * specular_factor);
//// end of specular ////
//// spot light soft edges ////
let theta = dot(light_dir, normalize(-spot_light.direction));
let epsilon = spot_light.cutoff - spot_light.outer_cutoff;
let intensity = clamp((theta - spot_light.outer_cutoff) / epsilon, 0.0, 1.0);
//diffuse_color *= intensity;
//specular_color *= intensity;
//// end of spot light soft edges ////
//// spot light attenuation ////
let distance = length(light_pos - world_pos);
let attenuation = 1.0 / (spot_light.constant + spot_light.linear * distance +
spot_light.quadratic * (distance * distance));
ambient_color *= attenuation * intensity * spot_light.ambient;
diffuse_color *= attenuation * intensity * spot_light.diffuse;
specular_color *= attenuation * intensity * spot_light.specular;
//// end of spot light attenuation ////
return /*ambient_color +*/ diffuse_color + specular_color;
/*} else {
return vec3<f32>(0.0);
}*/
}