2756 lines
106 KiB
Markdown
2756 lines
106 KiB
Markdown
This is a guide to using [YubiKey](https://www.yubico.com/products/yubikey-hardware/) as a [SmartCard](https://security.stackexchange.com/questions/38924/how-does-storing-gpg-ssh-private-keys-on-smart-cards-compare-to-plain-usb-drives) for storing GPG encryption, signing and authentication keys, which can also be used for SSH. Many of the principles in this document are applicable to other smart card devices.
|
|
|
|
Keys stored on YubiKey are [non-exportable](https://support.yubico.com/support/solutions/articles/15000010242-can-i-duplicate-or-back-up-a-yubikey-) (as opposed to file-based keys that are stored on disk) and are convenient for everyday use. Instead of having to remember and enter passphrases to unlock SSH/GPG keys, YubiKey needs only a physical touch after being unlocked with a PIN. All signing and encryption operations happen on the card, rather than in OS memory.
|
|
|
|
**New!** [drduh/Purse](https://github.com/drduh/Purse) is a password manager which uses GPG and YubiKey.
|
|
|
|
**Security Note**: If you followed this guide before Jan 2021, your PUK (Pin Unblock Key) may be set to its default value of `12345678`. An attacker can use this to reset your PIN and use your Yubikey. Please see the [Change PUK](#change-puk) section for details on how to change your PUK.
|
|
|
|
If you have a comment or suggestion, please open an [Issue](https://github.com/drduh/YubiKey-Guide/issues) on GitHub.
|
|
|
|
- [Purchase](#purchase)
|
|
- [Prepare environment](#prepare-environment)
|
|
- [Required software](#required-software)
|
|
* [Debian and Ubuntu](#debian-and-ubuntu)
|
|
* [Arch](#arch)
|
|
* [RHEL7](#rhel7)
|
|
* [NixOS](#nixos)
|
|
* [OpenBSD](#openbsd)
|
|
* [macOS](#macos)
|
|
* [Windows](#windows)
|
|
- [Entropy](#entropy)
|
|
- [Creating keys](#creating-keys)
|
|
* [Temporary working directory](#temporary-working-directory)
|
|
* [Harden configuration](#harden-configuration)
|
|
- [Master key](#master-key)
|
|
- [Sign with existing key](#sign-with-existing-key)
|
|
- [Sub-keys](#sub-keys)
|
|
* [Signing](#signing)
|
|
* [Encryption](#encryption)
|
|
* [Authentication](#authentication)
|
|
* [Add extra identities](#add-extra-identities)
|
|
- [Verify](#verify)
|
|
- [Export secret keys](#export-secret-keys)
|
|
- [Revocation certificate](#revocation-certificate)
|
|
- [Backup](#backup)
|
|
- [Export public keys](#export-public-keys)
|
|
- [Configure Smartcard](#configure-smartcard)
|
|
* [Change PIN](#change-pin)
|
|
* [Set information](#set-information)
|
|
- [Transfer keys](#transfer-keys)
|
|
* [Signing](#signing-1)
|
|
* [Encryption](#encryption-1)
|
|
* [Authentication](#authentication-1)
|
|
- [Verify card](#verify-card)
|
|
- [Multiple YubiKeys](#multiple-yubikeys)
|
|
- [Cleanup](#cleanup)
|
|
- [Using keys](#using-keys)
|
|
- [Rotating keys](#rotating-keys)
|
|
* [Setup environment](#setup-environment)
|
|
* [Renewing sub-keys](#renewing-sub-keys)
|
|
* [Rotating keys](#rotating-keys-1)
|
|
- [Adding notations](#adding-notations)
|
|
- [SSH](#ssh)
|
|
* [Create configuration](#create-configuration)
|
|
* [Replace agents](#replace-agents)
|
|
* [Copy public key](#copy-public-key)
|
|
* [(Optional) Save public key for identity file configuration](#optional-save-public-key-for-identity-file-configuration)
|
|
* [Connect with public key authentication](#connect-with-public-key-authentication)
|
|
* [Import SSH keys](#import-ssh-keys)
|
|
* [Remote machines (SSH Agent Forwarding)](#remote-machines-ssh-agent-forwarding)
|
|
- [Use ssh-agent](#use-ssh-agent)
|
|
- [Use S.gpg-agent.ssh](#use-sgpg-agentssh)
|
|
- [Chained SSH Agent Forwarding](#chained-ssh-agent-forwarding)
|
|
* [GitHub](#github)
|
|
* [OpenBSD](#openbsd-1)
|
|
* [Windows](#windows-1)
|
|
+ [WSL](#wsl)
|
|
- [Use ssh-agent or use S.weasel-pegant](#use-ssh-agent-or-use-sweasel-pegant)
|
|
- [Prerequisites](#prerequisites)
|
|
- [WSL configuration](#wsl-configuration)
|
|
- [Remote host configuration](#remote-host-configuration)
|
|
* [macOS](#macos-1)
|
|
- [Remote Machines (GPG Agent Forwarding)](#remote-machines-gpg-agent-forwarding)
|
|
* [Steps for older distributions](#steps-for-older-distributions)
|
|
* [Chained GPG Agent Forwarding](#chained-gpg-agent-forwarding)
|
|
- [Using Multiple Keys](#using-multiple-keys)
|
|
- [Require touch](#require-touch)
|
|
- [Email](#email)
|
|
* [Mailvelope on macOS](#mailvelope-on-macos)
|
|
* [Mutt](#mutt)
|
|
- [Reset](#reset)
|
|
- [Notes](#notes)
|
|
- [Troubleshooting](#troubleshooting)
|
|
- [Alternatives](#alternatives)
|
|
- [Links](#links)
|
|
|
|
|
|
# Purchase
|
|
|
|
All YubiKeys except the blue "security key" model are compatible with this guide. NEO models are limited to 2048-bit RSA keys. Compare YubiKeys [here](https://www.yubico.com/products/yubikey-hardware/compare-products-series/). Yubico have also just released a press release and blog post about supporting resident ssh keys on their Yubikeys including blue "security key 5 NFC" with OpenSSH 8.2 or later, see [here](https://www.yubico.com/blog/github-now-supports-ssh-security-keys/) for details.
|
|
|
|
To verify a YubiKey is genuine, open a [browser with U2F support](https://support.yubico.com/support/solutions/articles/15000009591-how-to-confirm-your-yubico-device-is-genuine-with-u2f) to [https://www.yubico.com/genuine/](https://www.yubico.com/genuine/). Insert a Yubico device, and select *Verify Device* to begin the process. Touch the YubiKey when prompted, and if asked, allow it to see the make and model of the device. If you see *Verification complete*, the device is authentic.
|
|
|
|
This website verifies YubiKey device attestation certificates signed by a set of Yubico certificate authorities, and helps mitigate [supply chain attacks](https://media.defcon.org/DEF%20CON%2025/DEF%20CON%2025%20presentations/DEF%20CON%2025%20-%20r00killah-and-securelyfitz-Secure-Tokin-and-Doobiekeys.pdf).
|
|
|
|
You will also need several small storage devices (microSD cards work well) for storing encrypted backups of your keys.
|
|
|
|
# Prepare environment
|
|
|
|
To create cryptographic keys, a secure environment that can be reasonably assured to be free of adversarial control is recommended. Here is a general ranking of environments most to least likely to be compromised:
|
|
|
|
1. Daily-use operating system
|
|
1. Virtual machine on daily-use host OS (using [virt-manager](https://virt-manager.org/), VirtualBox, or VMWare)
|
|
1. Separate hardened [Debian](https://www.debian.org/) or [OpenBSD](https://www.openbsd.org/) installation which can be dual booted
|
|
1. Live image, such as [Debian Live](https://www.debian.org/CD/live/) or [Tails](https://tails.boum.org/index.en.html)
|
|
1. Secure hardware/firmware ([Coreboot](https://www.coreboot.org/), [Intel ME removed](https://github.com/corna/me_cleaner))
|
|
|
|
1. Dedicated air-gapped system with no networking capabilities
|
|
|
|
This guide recommends using a bootable "live" Debian Linux image to provide such an environment, however, depending on your threat model, you may want to take fewer or more steps to secure it.
|
|
|
|
To use Debian Live, download the latest image:
|
|
|
|
```console
|
|
$ curl -LfO https://cdimage.debian.org/debian-cd/current-live/amd64/iso-hybrid/SHA512SUMS
|
|
|
|
$ curl -LfO https://cdimage.debian.org/debian-cd/current-live/amd64/iso-hybrid/SHA512SUMS.sign
|
|
|
|
$ curl -LfO https://cdimage.debian.org/debian-cd/current-live/amd64/iso-hybrid/$(awk '/xfce.iso/ {print $2}' SHA512SUMS)
|
|
```
|
|
|
|
Verify the signature of the hashes file with GPG:
|
|
|
|
```console
|
|
$ gpg --verify SHA512SUMS.sign SHA512SUMS
|
|
gpg: Signature made Sat 09 May 2020 05:17:57 PM PDT
|
|
gpg: using RSA key DF9B9C49EAA9298432589D76DA87E80D6294BE9B
|
|
gpg: Can't check signature: No public key
|
|
|
|
$ gpg --keyserver hkps://keyring.debian.org --recv DF9B9C49EAA9298432589D76DA87E80D6294BE9B
|
|
gpg: key 0xDA87E80D6294BE9B: public key "Debian CD signing key <debian-cd@lists.debian.org>" imported
|
|
gpg: Total number processed: 1
|
|
gpg: imported: 1
|
|
|
|
$ gpg --verify SHA512SUMS.sign SHA512SUMS
|
|
gpg: Signature made Sat 09 May 2020 05:17:57 PM PDT
|
|
gpg: using RSA key DF9B9C49EAA9298432589D76DA87E80D6294BE9B
|
|
gpg: Good signature from "Debian CD signing key <debian-cd@lists.debian.org>" [unknown]
|
|
gpg: WARNING: This key is not certified with a trusted signature!
|
|
gpg: There is no indication that the signature belongs to the owner.
|
|
Primary key fingerprint: DF9B 9C49 EAA9 2984 3258 9D76 DA87 E80D 6294 BE9B
|
|
```
|
|
|
|
If the public key cannot be received, try changing the DNS resolver and/or use a different keyserver:
|
|
|
|
```console
|
|
$ gpg --keyserver hkps://keyserver.ubuntu.com:443 --recv DF9B9C49EAA9298432589D76DA87E80D6294BE9B
|
|
```
|
|
|
|
Ensure the SHA512 hash of the live image matches the one in the signed file.
|
|
|
|
```console
|
|
$ grep $(sha512sum debian-live-*-amd64-xfce.iso) SHA512SUMS
|
|
SHA512SUMS:799ec1fdb098caa7b60b71ed1fdb1f6390a1c6717b4314265e7042fa271c84f67fff0d0380297f60c4bcd0c1001e08623ab3d2a2ad64079d83d1795c40eb7a0a debian-live-10.5.0-amd64-xfce.iso
|
|
```
|
|
|
|
See [Verifying authenticity of Debian CDs](https://www.debian.org/CD/verify) for more information.
|
|
|
|
Mount a storage device and copy the image to it:
|
|
|
|
**Linux**
|
|
|
|
```console
|
|
$ sudo dmesg | tail
|
|
usb-storage 3-2:1.0: USB Mass Storage device detected
|
|
scsi host2: usb-storage 3-2:1.0
|
|
scsi 2:0:0:0: Direct-Access TS-RDF5 SD Transcend TS3A PQ: 0 ANSI: 6
|
|
sd 2:0:0:0: Attached scsi generic sg1 type 0
|
|
sd 2:0:0:0: [sdb] 31116288 512-byte logical blocks: (15.9 GB/14.8 GiB)
|
|
sd 2:0:0:0: [sdb] Write Protect is off
|
|
sd 2:0:0:0: [sdb] Mode Sense: 23 00 00 00
|
|
sd 2:0:0:0: [sdb] Write cache: disabled, read cache: enabled, doesn't support DPO or FUA
|
|
sdb: sdb1 sdb2
|
|
sd 2:0:0:0: [sdb] Attached SCSI removable disk
|
|
|
|
$ sudo dd if=debian-live-10.4.0-amd64-xfce.iso of=/dev/sdb bs=4M; sync
|
|
465+1 records in
|
|
465+1 records out
|
|
1951432704 bytes (2.0 GB, 1.8 GiB) copied, 42.8543 s, 45.5 MB/s
|
|
```
|
|
|
|
**OpenBSD**
|
|
|
|
```console
|
|
$ dmesg | tail -n2
|
|
sd2 at scsibus4 targ 1 lun 0: <TS-RDF5, SD Transcend, TS3A> SCSI4 0/direct removable serial.0000000000000
|
|
sd2: 15193MB, 512 bytes/sector, 31116288 sectors
|
|
|
|
$ doas dd if=debian-live-10.4.0-amd64-xfce.iso of=/dev/rsd2c bs=4m
|
|
465+1 records in
|
|
465+1 records out
|
|
1951432704 bytes transferred in 139.125 secs (14026448 bytes/sec)
|
|
```
|
|
|
|
Shut down the computer and disconnect internal hard drives and all unnecessary peripheral devices. If being run within a VM, this part can be skipped as no such devices should be attached to the VM since the image will still be run as a "live image".
|
|
|
|
# Required software
|
|
|
|
Boot the live image and configure networking.
|
|
|
|
**Note** If the screen locks, unlock with `user`/`live`.
|
|
|
|
Open the terminal and install required software packages.
|
|
|
|
## Debian and Ubuntu
|
|
|
|
**Note** Live Ubuntu images [may require modification](https://github.com/drduh/YubiKey-Guide/issues/116) to `/etc/apt/sources.list`
|
|
|
|
```console
|
|
$ sudo apt update
|
|
|
|
$ sudo apt -y upgrade
|
|
|
|
$ sudo apt -y install wget gnupg2 gnupg-agent dirmngr cryptsetup scdaemon pcscd secure-delete hopenpgp-tools yubikey-personalization
|
|
```
|
|
|
|
You may additionally need (particularly for Ubuntu 18.04 and 20.04):
|
|
|
|
```console
|
|
$ sudo apt -y install libssl-dev swig libpcsclite-dev
|
|
```
|
|
|
|
To download a copy of this guide:
|
|
|
|
```console
|
|
$ wget https://raw.githubusercontent.com/drduh/YubiKey-Guide/master/README.md
|
|
```
|
|
|
|
To install and use the `ykman` utility:
|
|
|
|
```console
|
|
$ sudo apt -y install python3-pip python3-pyscard
|
|
|
|
$ pip3 install PyOpenSSL
|
|
|
|
$ pip3 install yubikey-manager
|
|
|
|
|
|
$ sudo service pcscd start
|
|
|
|
$ ~/.local/bin/ykman openpgp info
|
|
```
|
|
|
|
## Arch
|
|
|
|
```console
|
|
$ sudo pacman -Syu gnupg pcsclite ccid hopenpgp-tools yubikey-personalization
|
|
```
|
|
|
|
## RHEL7
|
|
|
|
```console
|
|
$ sudo yum install -y gnupg2 pinentry-curses pcsc-lite pcsc-lite-libs gnupg2-smime
|
|
```
|
|
|
|
## NixOS
|
|
|
|
Generate a NixOS LiveCD image with the given config:
|
|
|
|
```nix
|
|
# yubikey-installer.nix
|
|
{ nixpkgs ? <nixpkgs>, system ? "x86_64-linux" } :
|
|
|
|
let
|
|
config = { pkgs, ... }:
|
|
with pkgs; {
|
|
imports = [ <nixpkgs/nixos/modules/installer/cd-dvd/installation-cd-graphical-plasma5.nix> ];
|
|
|
|
boot.kernelPackages = linuxPackages_latest;
|
|
|
|
services.pcscd.enable = true;
|
|
services.udev.packages = [ yubikey-personalization ];
|
|
|
|
environment.systemPackages = [ gnupg pinentry-curses pinentry-qt paperkey wget ];
|
|
|
|
programs = {
|
|
ssh.startAgent = false;
|
|
gnupg.agent = {
|
|
enable = true;
|
|
enableSSHSupport = true;
|
|
};
|
|
};
|
|
};
|
|
|
|
evalNixos = configuration: import <nixpkgs/nixos> {
|
|
inherit system configuration;
|
|
};
|
|
|
|
in {
|
|
iso = (evalNixos config).config.system.build.isoImage;
|
|
}
|
|
```
|
|
|
|
Build the installer and copy it to a USB drive.
|
|
|
|
```console
|
|
$ nix build -f yubikey-installer.nix --out-link installer
|
|
|
|
$ sudo cp -v installer/iso/*.iso /dev/sdb; sync
|
|
'installer/iso/nixos-20.03.git.c438ce1-x86_64-linux.iso' -> '/dev/sdb'
|
|
```
|
|
|
|
On NixOS, ensure that you have `pinentry-program /run/current-system/sw/bin/pinentry-curses` in your `$GNUPGHOME/gpg-agent.conf` before running any `gpg` commands.
|
|
|
|
|
|
## OpenBSD
|
|
|
|
```console
|
|
$ doas pkg_add gnupg pcsc-tools
|
|
```
|
|
|
|
## macOS
|
|
|
|
Download and install [Homebrew](https://brew.sh/) and the following packages:
|
|
|
|
```console
|
|
$ brew install gnupg yubikey-personalization hopenpgp-tools ykman pinentry-mac
|
|
```
|
|
|
|
**Note** An additional Python package dependency may need to be installed to use [`ykman`](https://support.yubico.com/support/solutions/articles/15000012643-yubikey-manager-cli-ykman-user-guide) - `pip install yubikey-manager`
|
|
|
|
## Windows
|
|
|
|
Download and install [Gpg4Win](https://www.gpg4win.org/) and [PuTTY](https://putty.org).
|
|
|
|
You may also need more recent versions of [yubikey-personalization](https://developers.yubico.com/yubikey-personalization/Releases/) and [yubico-c](https://developers.yubico.com/yubico-c/Releases/).
|
|
|
|
# Entropy
|
|
|
|
Generating cryptographic keys requires high-quality [randomness](https://www.random.org/randomness/), measured as entropy.
|
|
|
|
To check the available entropy available on Linux:
|
|
|
|
```console
|
|
$ cat /proc/sys/kernel/random/entropy_avail
|
|
849
|
|
```
|
|
|
|
Most operating systems use software-based pseudorandom number generators. On newer machines there are CPU based hardware random number generators (HRNG) or you can use a separate hardware device like the White Noise or [OneRNG](https://onerng.info/onerng/) will [increase the speed](https://lwn.net/Articles/648550/) of entropy generation and possibly the quality.
|
|
|
|
From YubiKey firmware version 5.2.3 onwards - which introduces "Enhancements to OpenPGP 3.4 Support" - we can gather additional entropy from the YubiKey itself via the SmartCard interface.
|
|
|
|
## YubiKey
|
|
|
|
To feed the system's PRNG with entropy generated by the YubiKey itself, issue:
|
|
```console
|
|
$ echo "SCD RANDOM 512" | gpg-connect-agent | sudo tee /dev/random | hexdump -C
|
|
```
|
|
This will seed the Linux kernel's PRNG with additional 512 bytes retrieved from the YubiKey.
|
|
|
|
## OneRNG
|
|
|
|
Install [rng-tools](https://wiki.archlinux.org/index.php/Rng-tools) software:
|
|
|
|
```console
|
|
$ sudo apt -y install at rng-tools python3-gnupg openssl
|
|
```
|
|
|
|
If you have a hardware device other than the CPU based one, install the accompany software and point rng-tools to its `/dev/` device.
|
|
|
|
OneRNG specific example:
|
|
|
|
```
|
|
$ sudo apt -y install python-gnupg
|
|
$ wget https://github.com/OneRNG/onerng.github.io/raw/master/sw/onerng_3.6-1_all.deb
|
|
|
|
$ sha256sum onerng_3.6-1_all.deb
|
|
a9ccf7b04ee317dbfc91518542301e2d60ebe205d38e80563f29aac7cd845ccb onerng_3.6-1_all.deb
|
|
|
|
$ sudo dpkg -i onerng_3.6-1_all.deb
|
|
|
|
$ echo "HRNGDEVICE=/dev/ttyACM0" | sudo tee /etc/default/rng-tools
|
|
```
|
|
|
|
Plug in the device and restart rng-tools:
|
|
|
|
```console
|
|
$ sudo atd
|
|
|
|
$ sudo service rng-tools restart
|
|
```
|
|
|
|
Test by emptying `/dev/random` - the light on the device will dim briefly:
|
|
|
|
```console
|
|
$ cat /dev/random >/dev/null
|
|
[Press Control-C]
|
|
```
|
|
|
|
After a few seconds, verify the available entropy pool is quickly re-seeded:
|
|
|
|
```console
|
|
$ cat /proc/sys/kernel/random/entropy_avail
|
|
3049
|
|
```
|
|
|
|
An entropy pool value greater than 2000 is sufficient.
|
|
|
|
# Creating keys
|
|
|
|
## Temporary working directory
|
|
|
|
Create a temporary directory which will be cleared on [reboot](https://en.wikipedia.org/wiki/Tmpfs) and set it as the GnuPG directory:
|
|
|
|
```console
|
|
$ export GNUPGHOME=$(mktemp -d -t gnupg_$(date +%Y%m%d%H%M)_XXX)
|
|
```
|
|
|
|
Otherwise, to preserve the working environment, set the GnuPG directory to your home folder:
|
|
|
|
```console
|
|
$ export GNUPGHOME=~/gnupg-workspace
|
|
```
|
|
|
|
## Harden configuration
|
|
|
|
Create a hardened configuration in the temporary working directory with the following options:
|
|
|
|
```console
|
|
$ wget -O $GNUPGHOME/gpg.conf https://raw.githubusercontent.com/drduh/config/master/gpg.conf
|
|
|
|
$ grep -ve "^#" $GNUPGHOME/gpg.conf
|
|
personal-cipher-preferences AES256 AES192 AES
|
|
personal-digest-preferences SHA512 SHA384 SHA256
|
|
personal-compress-preferences ZLIB BZIP2 ZIP Uncompressed
|
|
default-preference-list SHA512 SHA384 SHA256 AES256 AES192 AES ZLIB BZIP2 ZIP Uncompressed
|
|
cert-digest-algo SHA512
|
|
s2k-digest-algo SHA512
|
|
s2k-cipher-algo AES256
|
|
charset utf-8
|
|
fixed-list-mode
|
|
no-comments
|
|
no-emit-version
|
|
keyid-format 0xlong
|
|
list-options show-uid-validity
|
|
verify-options show-uid-validity
|
|
with-fingerprint
|
|
require-cross-certification
|
|
no-symkey-cache
|
|
use-agent
|
|
throw-keyids
|
|
```
|
|
|
|
Disable networking for the remainder of the setup.
|
|
|
|
# Master key
|
|
|
|
The first key to generate is the master key. It will be used for certification only: to issue sub-keys that are used for encryption, signing and authentication.
|
|
|
|
**Important** The master key should be kept offline at all times and only accessed to revoke or issue new sub-keys. Keys can also be generated on the YubiKey itself to ensure no other copies exist.
|
|
|
|
You'll be prompted to enter and verify a passphrase - keep it handy as you'll need it multiple times later.
|
|
|
|
Generate a strong passphrase which could be written down in a secure place or memorized:
|
|
|
|
```console
|
|
$ gpg --gen-random --armor 0 24
|
|
ydOmByxmDe63u7gqx2XI9eDgpvJwibNH
|
|
```
|
|
|
|
Use upper case letters for improved readability if they are written down:
|
|
|
|
```console
|
|
$ tr -dc '[:upper:]' < /dev/urandom | fold -w 20 | head -n1
|
|
BSSYMUGGTJQVWZZWOPJG
|
|
```
|
|
|
|
**Important** Save this credential in a permanent, secure place as it will be needed to issue new sub-keys after expiration, and to provision additional YubiKeys.
|
|
|
|
**Tip** On Linux or OpenBSD, select the password using the mouse or by double-clicking on it to copy to clipboard. Paste using the middle mouse button or `Shift`-`Insert`.
|
|
|
|
Generate a new key with GPG, selecting `(8) RSA (set your own capabilities)`, `Certify` capability only and `4096` bit key size.
|
|
|
|
Do not set the master key to expire - see [Note #3](#notes).
|
|
|
|
```console
|
|
$ gpg --expert --full-generate-key
|
|
|
|
Please select what kind of key you want:
|
|
(1) RSA and RSA (default)
|
|
(2) DSA and Elgamal
|
|
(3) DSA (sign only)
|
|
(4) RSA (sign only)
|
|
(7) DSA (set your own capabilities)
|
|
(8) RSA (set your own capabilities)
|
|
(9) ECC and ECC
|
|
(10) ECC (sign only)
|
|
(11) ECC (set your own capabilities)
|
|
(13) Existing key
|
|
Your selection? 8
|
|
|
|
Possible actions for a RSA key: Sign Certify Encrypt Authenticate
|
|
Current allowed actions: Sign Certify Encrypt
|
|
|
|
(S) Toggle the sign capability
|
|
(E) Toggle the encrypt capability
|
|
(A) Toggle the authenticate capability
|
|
(Q) Finished
|
|
|
|
Your selection? E
|
|
|
|
Possible actions for a RSA key: Sign Certify Encrypt Authenticate
|
|
Current allowed actions: Sign Certify
|
|
|
|
(S) Toggle the sign capability
|
|
(E) Toggle the encrypt capability
|
|
(A) Toggle the authenticate capability
|
|
(Q) Finished
|
|
|
|
Your selection? S
|
|
|
|
Possible actions for a RSA key: Sign Certify Encrypt Authenticate
|
|
Current allowed actions: Certify
|
|
|
|
(S) Toggle the sign capability
|
|
(E) Toggle the encrypt capability
|
|
(A) Toggle the authenticate capability
|
|
(Q) Finished
|
|
|
|
Your selection? Q
|
|
RSA keys may be between 1024 and 4096 bits long.
|
|
What keysize do you want? (2048) 4096
|
|
Requested keysize is 4096 bits
|
|
Please specify how long the key should be valid.
|
|
0 = key does not expire
|
|
<n> = key expires in n days
|
|
<n>w = key expires in n weeks
|
|
<n>m = key expires in n months
|
|
<n>y = key expires in n years
|
|
Key is valid for? (0) 0
|
|
Key does not expire at all
|
|
Is this correct? (y/N) y
|
|
```
|
|
|
|
Input any name and email address:
|
|
|
|
```console
|
|
GnuPG needs to construct a user ID to identify your key.
|
|
|
|
Real name: Dr Duh
|
|
Email address: doc@duh.to
|
|
Comment: [Optional - leave blank]
|
|
You selected this USER-ID:
|
|
"Dr Duh <doc@duh.to>"
|
|
|
|
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
|
|
|
|
We need to generate a lot of random bytes. It is a good idea to perform
|
|
some other action (type on the keyboard, move the mouse, utilize the
|
|
disks) during the prime generation; this gives the random number
|
|
generator a better chance to gain enough entropy.
|
|
|
|
gpg: /tmp.FLZC0xcM/trustdb.gpg: trustdb created
|
|
gpg: key 0xFF3E7D88647EBCDB marked as ultimately trusted
|
|
gpg: directory '/tmp.FLZC0xcM/openpgp-revocs.d' created
|
|
gpg: revocation certificate stored as '/tmp.FLZC0xcM/openpgp-revocs.d/011CE16BD45B27A55BA8776DFF3E7D88647EBCDB.rev'
|
|
public and secret key created and signed.
|
|
|
|
pub rsa4096/0xFF3E7D88647EBCDB 2017-10-09 [C]
|
|
Key fingerprint = 011C E16B D45B 27A5 5BA8 776D FF3E 7D88 647E BCDB
|
|
uid Dr Duh <doc@duh.to>
|
|
```
|
|
|
|
Export the key ID as a [variable](https://stackoverflow.com/questions/1158091/defining-a-variable-with-or-without-export/1158231#1158231) (`KEYID`) for use later:
|
|
|
|
```console
|
|
$ export KEYID=0xFF3E7D88647EBCDB
|
|
```
|
|
|
|
# Sign with existing key
|
|
|
|
(Optional) If you already have a PGP key, you may want to sign the new key with the old one to prove that the new key is controlled by you.
|
|
|
|
Export your existing key to move it to the working keyring:
|
|
|
|
```console
|
|
$ gpg --export-secret-keys --armor --output /tmp/new.sec
|
|
```
|
|
|
|
Then sign the new key:
|
|
|
|
```console
|
|
$ gpg --default-key $OLDKEY --sign-key $KEYID
|
|
```
|
|
|
|
# Sub-keys
|
|
|
|
Edit the master key to add sub-keys:
|
|
|
|
```console
|
|
$ gpg --expert --edit-key $KEYID
|
|
|
|
Secret key is available.
|
|
|
|
sec rsa4096/0xEA5DE91459B80592
|
|
created: 2017-10-09 expires: never usage: C
|
|
trust: ultimate validity: ultimate
|
|
[ultimate] (1). Dr Duh <doc@duh.to>
|
|
```
|
|
|
|
Use 4096-bit RSA keys.
|
|
|
|
Use a 1 year expiration for sub-keys - they can be renewed using the offline master key. See [rotating keys](#rotating-keys).
|
|
|
|
## Signing
|
|
|
|
Create a [signing key](https://stackoverflow.com/questions/5421107/can-rsa-be-both-used-as-encryption-and-signature/5432623#5432623) by selecting `addkey` then `(4) RSA (sign only)`:
|
|
|
|
```console
|
|
gpg> addkey
|
|
Key is protected.
|
|
|
|
You need a passphrase to unlock the secret key for
|
|
user: "Dr Duh <doc@duh.to>"
|
|
4096-bit RSA key, ID 0xFF3E7D88647EBCDB, created 2016-05-24
|
|
|
|
Please select what kind of key you want:
|
|
(3) DSA (sign only)
|
|
(4) RSA (sign only)
|
|
(5) Elgamal (encrypt only)
|
|
(6) RSA (encrypt only)
|
|
(7) DSA (set your own capabilities)
|
|
(8) RSA (set your own capabilities)
|
|
Your selection? 4
|
|
RSA keys may be between 1024 and 4096 bits long.
|
|
What keysize do you want? (2048) 4096
|
|
Requested keysize is 4096 bits
|
|
Please specify how long the key should be valid.
|
|
0 = key does not expire
|
|
<n> = key expires in n days
|
|
<n>w = key expires in n weeks
|
|
<n>m = key expires in n months
|
|
<n>y = key expires in n years
|
|
Key is valid for? (0) 1y
|
|
Key expires at Mon 10 Sep 2018 00:00:00 PM UTC
|
|
Is this correct? (y/N) y
|
|
Really create? (y/N) y
|
|
We need to generate a lot of random bytes. It is a good idea to perform
|
|
some other action (type on the keyboard, move the mouse, utilize the
|
|
disks) during the prime generation; this gives the random number
|
|
generator a better chance to gain enough entropy.
|
|
|
|
sec rsa4096/0xFF3E7D88647EBCDB
|
|
created: 2017-10-09 expires: never usage: C
|
|
trust: ultimate validity: ultimate
|
|
ssb rsa4096/0xBECFA3C1AE191D15
|
|
created: 2017-10-09 expires: 2018-10-09 usage: S
|
|
[ultimate] (1). Dr Duh <doc@duh.to>
|
|
```
|
|
|
|
## Encryption
|
|
|
|
Next, create an [encryption key](https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php) by selecting `(6) RSA (encrypt only)`:
|
|
|
|
```console
|
|
gpg> addkey
|
|
Please select what kind of key you want:
|
|
(3) DSA (sign only)
|
|
(4) RSA (sign only)
|
|
(5) Elgamal (encrypt only)
|
|
(6) RSA (encrypt only)
|
|
(7) DSA (set your own capabilities)
|
|
(8) RSA (set your own capabilities)
|
|
(10) ECC (sign only)
|
|
(11) ECC (set your own capabilities)
|
|
(12) ECC (encrypt only)
|
|
(13) Existing key
|
|
Your selection? 6
|
|
RSA keys may be between 1024 and 4096 bits long.
|
|
What keysize do you want? (2048) 4096
|
|
Requested keysize is 4096 bits
|
|
Please specify how long the key should be valid.
|
|
0 = key does not expire
|
|
<n> = key expires in n days
|
|
<n>w = key expires in n weeks
|
|
<n>m = key expires in n months
|
|
<n>y = key expires in n years
|
|
Key is valid for? (0) 1y
|
|
Key expires at Mon 10 Sep 2018 00:00:00 PM UTC
|
|
Is this correct? (y/N) y
|
|
Really create? (y/N) y
|
|
We need to generate a lot of random bytes. It is a good idea to perform
|
|
some other action (type on the keyboard, move the mouse, utilize the
|
|
disks) during the prime generation; this gives the random number
|
|
generator a better chance to gain enough entropy.
|
|
|
|
sec rsa4096/0xFF3E7D88647EBCDB
|
|
created: 2017-10-09 expires: never usage: C
|
|
trust: ultimate validity: ultimate
|
|
ssb rsa4096/0xBECFA3C1AE191D15
|
|
created: 2017-10-09 expires: 2018-10-09 usage: S
|
|
ssb rsa4096/0x5912A795E90DD2CF
|
|
created: 2017-10-09 expires: 2018-10-09 usage: E
|
|
[ultimate] (1). Dr Duh <doc@duh.to>
|
|
```
|
|
|
|
## Authentication
|
|
|
|
Finally, create an [authentication key](https://superuser.com/questions/390265/what-is-a-gpg-with-authenticate-capability-used-for).
|
|
|
|
GPG doesn't provide an authenticate-only key type, so select `(8) RSA (set your own capabilities)` and toggle the required capabilities until the only allowed action is `Authenticate`:
|
|
|
|
```console
|
|
gpg> addkey
|
|
Please select what kind of key you want:
|
|
(3) DSA (sign only)
|
|
(4) RSA (sign only)
|
|
(5) Elgamal (encrypt only)
|
|
(6) RSA (encrypt only)
|
|
(7) DSA (set your own capabilities)
|
|
(8) RSA (set your own capabilities)
|
|
(10) ECC (sign only)
|
|
(11) ECC (set your own capabilities)
|
|
(12) ECC (encrypt only)
|
|
(13) Existing key
|
|
Your selection? 8
|
|
|
|
Possible actions for a RSA key: Sign Encrypt Authenticate
|
|
Current allowed actions: Sign Encrypt
|
|
|
|
(S) Toggle the sign capability
|
|
(E) Toggle the encrypt capability
|
|
(A) Toggle the authenticate capability
|
|
(Q) Finished
|
|
|
|
Your selection? S
|
|
|
|
Possible actions for a RSA key: Sign Encrypt Authenticate
|
|
Current allowed actions: Encrypt
|
|
|
|
(S) Toggle the sign capability
|
|
(E) Toggle the encrypt capability
|
|
(A) Toggle the authenticate capability
|
|
(Q) Finished
|
|
|
|
Your selection? E
|
|
|
|
Possible actions for a RSA key: Sign Encrypt Authenticate
|
|
Current allowed actions:
|
|
|
|
(S) Toggle the sign capability
|
|
(E) Toggle the encrypt capability
|
|
(A) Toggle the authenticate capability
|
|
(Q) Finished
|
|
|
|
Your selection? A
|
|
|
|
Possible actions for a RSA key: Sign Encrypt Authenticate
|
|
Current allowed actions: Authenticate
|
|
|
|
(S) Toggle the sign capability
|
|
(E) Toggle the encrypt capability
|
|
(A) Toggle the authenticate capability
|
|
(Q) Finished
|
|
|
|
Your selection? Q
|
|
RSA keys may be between 1024 and 4096 bits long.
|
|
What keysize do you want? (2048) 4096
|
|
Requested keysize is 4096 bits
|
|
Please specify how long the key should be valid.
|
|
0 = key does not expire
|
|
<n> = key expires in n days
|
|
<n>w = key expires in n weeks
|
|
<n>m = key expires in n months
|
|
<n>y = key expires in n years
|
|
Key is valid for? (0) 1y
|
|
Key expires at Mon 10 Sep 2018 00:00:00 PM UTC
|
|
Is this correct? (y/N) y
|
|
Really create? (y/N) y
|
|
We need to generate a lot of random bytes. It is a good idea to perform
|
|
some other action (type on the keyboard, move the mouse, utilize the
|
|
disks) during the prime generation; this gives the random number
|
|
generator a better chance to gain enough entropy.
|
|
|
|
sec rsa4096/0xFF3E7D88647EBCDB
|
|
created: 2017-10-09 expires: never usage: C
|
|
trust: ultimate validity: ultimate
|
|
ssb rsa4096/0xBECFA3C1AE191D15
|
|
created: 2017-10-09 expires: 2018-10-09 usage: S
|
|
ssb rsa4096/0x5912A795E90DD2CF
|
|
created: 2017-10-09 expires: 2018-10-09 usage: E
|
|
ssb rsa4096/0x3F29127E79649A3D
|
|
created: 2017-10-09 expires: 2018-10-09 usage: A
|
|
[ultimate] (1). Dr Duh <doc@duh.to>
|
|
```
|
|
|
|
Finish by saving the keys.
|
|
|
|
```console
|
|
gpg> save
|
|
```
|
|
|
|
## Add extra identities
|
|
|
|
(Optional) To add additional email addresses or identities, use `adduid`:
|
|
|
|
```console
|
|
gpg> adduid
|
|
Real name: Dr Duh
|
|
Email address: DrDuh@other.org
|
|
Comment:
|
|
You selected this USER-ID:
|
|
"Dr Duh <DrDuh@other.org>"
|
|
|
|
sec rsa4096/0xFF3E7D88647EBCDB
|
|
created: 2017-10-09 expires: never usage: C
|
|
trust: ultimate validity: ultimate
|
|
ssb rsa4096/0xBECFA3C1AE191D15
|
|
created: 2017-10-09 expires: never usage: S
|
|
ssb rsa4096/0x5912A795E90DD2CF
|
|
created: 2017-10-09 expires: never usage: E
|
|
ssb rsa4096/0x3F29127E79649A3D
|
|
created: 2017-10-09 expires: never usage: A
|
|
[ultimate] (1). Dr Duh <doc@duh.to>
|
|
[ unknown] (2). Dr Duh <DrDuh@other.org>
|
|
|
|
gpg> trust
|
|
sec rsa4096/0xFF3E7D88647EBCDB
|
|
created: 2017-10-09 expires: never usage: C
|
|
trust: ultimate validity: ultimate
|
|
ssb rsa4096/0xBECFA3C1AE191D15
|
|
created: 2017-10-09 expires: never usage: S
|
|
ssb rsa4096/0x5912A795E90DD2CF
|
|
created: 2017-10-09 expires: never usage: E
|
|
ssb rsa4096/0x3F29127E79649A3D
|
|
created: 2017-10-09 expires: never usage: A
|
|
[ultimate] (1). Dr Duh <doc@duh.to>
|
|
[ unknown] (2). Dr Duh <DrDuh@other.org>
|
|
|
|
Please decide how far you trust this user to correctly verify other users' keys
|
|
(by looking at passports, checking fingerprints from different sources, etc.)
|
|
|
|
1 = I don't know or won't say
|
|
2 = I do NOT trust
|
|
3 = I trust marginally
|
|
4 = I trust fully
|
|
5 = I trust ultimately
|
|
m = back to the main menu
|
|
|
|
Your decision? 5
|
|
Do you really want to set this key to ultimate trust? (y/N) y
|
|
|
|
sec rsa4096/0xFF3E7D88647EBCDB
|
|
created: 2017-10-09 expires: never usage: C
|
|
trust: ultimate validity: ultimate
|
|
ssb rsa4096/0xBECFA3C1AE191D15
|
|
created: 2017-10-09 expires: never usage: S
|
|
ssb rsa4096/0x5912A795E90DD2CF
|
|
created: 2017-10-09 expires: never usage: E
|
|
ssb rsa4096/0x3F29127E79649A3D
|
|
created: 2017-10-09 expires: never usage: A
|
|
[ultimate] (1). Dr Duh <doc@duh.to>
|
|
[ unknown] (2). Dr Duh <DrDuh@other.org>
|
|
|
|
gpg> uid 1
|
|
|
|
sec rsa4096/0xFF3E7D88647EBCDB
|
|
created: 2017-10-09 expires: never usage: C
|
|
trust: ultimate validity: ultimate
|
|
ssb rsa4096/0xBECFA3C1AE191D15
|
|
created: 2017-10-09 expires: never usage: S
|
|
ssb rsa4096/0x5912A795E90DD2CF
|
|
created: 2017-10-09 expires: never usage: E
|
|
ssb rsa4096/0x3F29127E79649A3D
|
|
created: 2017-10-09 expires: never usage: A
|
|
[ultimate] (1)* Dr Duh <doc@duh.to>
|
|
[ unknown] (2). Dr Duh <DrDuh@other.org>
|
|
|
|
gpg> primary
|
|
|
|
sec rsa4096/0xFF3E7D88647EBCDB
|
|
created: 2017-10-09 expires: never usage: C
|
|
trust: ultimate validity: ultimate
|
|
ssb rsa4096/0xBECFA3C1AE191D15
|
|
created: 2017-10-09 expires: never usage: S
|
|
ssb rsa4096/0x5912A795E90DD2CF
|
|
created: 2017-10-09 expires: never usage: E
|
|
ssb rsa4096/0x3F29127E79649A3D
|
|
created: 2017-10-09 expires: never usage: A
|
|
[ultimate] (1)* Dr Duh <doc@duh.to>
|
|
[ unknown] (2) Dr Duh <DrDuh@other.org>
|
|
|
|
gpg> save
|
|
```
|
|
|
|
By default, the last identity added will be the primary user ID - use `primary` to change that.
|
|
|
|
# Verify
|
|
|
|
List the generated secret keys and verify the output:
|
|
|
|
```console
|
|
$ gpg -K
|
|
/tmp.FLZC0xcM/pubring.kbx
|
|
-------------------------------------------------------------------------
|
|
sec rsa4096/0xFF3E7D88647EBCDB 2017-10-09 [C]
|
|
Key fingerprint = 011C E16B D45B 27A5 5BA8 776D FF3E 7D88 647E BCDB
|
|
uid Dr Duh <doc@duh.to>
|
|
ssb rsa4096/0xBECFA3C1AE191D15 2017-10-09 [S] [expires: 2018-10-09]
|
|
ssb rsa4096/0x5912A795E90DD2CF 2017-10-09 [E] [expires: 2018-10-09]
|
|
ssb rsa4096/0x3F29127E79649A3D 2017-10-09 [A] [expires: 2018-10-09]
|
|
```
|
|
|
|
Add any additional identities or email addresses you wish to associate using the `adduid` command.
|
|
|
|
**Tip** Verify with a OpenPGP [key best practice checker](https://riseup.net/en/security/message-security/openpgp/best-practices#openpgp-key-checks):
|
|
|
|
```console
|
|
$ gpg --export $KEYID | hokey lint
|
|
```
|
|
|
|
The output will display any problems with your key in red text. If everything is green, your key passes each of the tests. If it is red, your key has failed one of the tests.
|
|
|
|
> hokey may warn (orange text) about cross certification for the authentication key. GPG's [Signing Subkey Cross-Certification](https://gnupg.org/faq/subkey-cross-certify.html) documentation has more detail on cross certification, and gpg v2.2.1 notes "subkey <keyid> does not sign and so does not need to be cross-certified". hokey may also indicate a problem (red text) with `Key expiration times: []` on the primary key (see [Note #3](#notes) about not setting an expiry for the primary key).
|
|
|
|
# Export secret keys
|
|
|
|
The master key and sub-keys will be encrypted with your passphrase when exported.
|
|
|
|
Save a copy of your keys:
|
|
|
|
```console
|
|
$ gpg --armor --export-secret-keys $KEYID > $GNUPGHOME/mastersub.key
|
|
|
|
$ gpg --armor --export-secret-subkeys $KEYID > $GNUPGHOME/sub.key
|
|
```
|
|
|
|
On Windows, note that using any extension other than `.gpg` or attempting IO redirection to a file will garble the secret key, making it impossible to import it again at a later date:
|
|
|
|
```console
|
|
$ gpg -o \path\to\dir\mastersub.gpg --armor --export-secret-keys $KEYID
|
|
|
|
$ gpg -o \path\to\dir\sub.gpg --armor --export-secret-subkeys $KEYID
|
|
```
|
|
|
|
# Revocation certificate
|
|
|
|
Although we will backup and store the master key in a safe place, it is best practice to never rule out the possibility of losing it or having the backup fail. Without the master key, it will be impossible to renew or rotate subkeys or generate a revocation certificate, the PGP identity will be useless.
|
|
|
|
Even worse, we cannot advertise this fact in any way to those that are using our keys. It is reasonable to assume this *will* occur at some point and the only remaining way to deprecate orphaned keys is a revocation certificate.
|
|
|
|
To create the revocation certificate:
|
|
|
|
``` console
|
|
$ gpg --output $GNUPGHOME/revoke.asc --gen-revoke $KEYID
|
|
```
|
|
|
|
The `revoke.asc` certificate file should be stored (or printed) in a (secondary) place that allows retrieval in case the main backup fails.
|
|
|
|
# Backup
|
|
|
|
Once keys are moved to YubiKey, they cannot be moved again! Create an **encrypted** backup of the keyring and consider using a [paper copy](https://www.jabberwocky.com/software/paperkey/) of the keys as an additional backup measure.
|
|
|
|
**Tip** The ext2 filesystem (without encryption) can be mounted on both Linux and OpenBSD. Consider using a FAT32/NTFS filesystem for MacOS/Windows compatibility instead.
|
|
|
|
**Linux**
|
|
|
|
Attach another external storage device and check its label:
|
|
|
|
```console
|
|
$ sudo dmesg | tail
|
|
mmc0: new high speed SDHC card at address a001
|
|
mmcblk0: mmc0:a001 SS16G 14.8 GiB
|
|
|
|
$ sudo fdisk -l /dev/mmcblk0
|
|
Disk /dev/mmcblk0: 14.9 GiB, 15931539456 bytes, 31116288 sectors
|
|
Units: sectors of 1 * 512 = 512 bytes
|
|
Sector size (logical/physical): 512 bytes / 512 bytes
|
|
I/O size (minimum/optimal): 512 bytes / 512 bytes
|
|
```
|
|
|
|
Write it with random data to prepare for encryption:
|
|
|
|
```console
|
|
$ sudo dd if=/dev/urandom of=/dev/mmcblk0 bs=4M status=progress
|
|
```
|
|
|
|
Erase and create a new partition table:
|
|
|
|
```console
|
|
$ sudo fdisk /dev/mmcblk0
|
|
|
|
Welcome to fdisk (util-linux 2.33.1).
|
|
Changes will remain in memory only, until you decide to write them.
|
|
Be careful before using the write command.
|
|
|
|
Device does not contain a recognized partition table.
|
|
Created a new DOS disklabel with disk identifier 0x3c1ad14a.
|
|
|
|
Command (m for help): o
|
|
Created a new DOS disklabel with disk identifier 0xd756b789.
|
|
|
|
Command (m for help): w
|
|
The partition table has been altered.
|
|
Calling ioctl() to re-read partition table.
|
|
Syncing disks.
|
|
|
|
```
|
|
|
|
Create a new partition with a 25 Megabyte size:
|
|
|
|
```console
|
|
$ sudo fdisk /dev/mmcblk0
|
|
|
|
Welcome to fdisk (util-linux 2.33.1).
|
|
Changes will remain in memory only, until you decide to write them.
|
|
Be careful before using the write command.
|
|
|
|
Command (m for help): n
|
|
Partition type
|
|
p primary (0 primary, 0 extended, 4 free)
|
|
e extended (container for logical partitions)
|
|
Select (default p): p
|
|
Partition number (1-4, default 1):
|
|
First sector (2048-31116287, default 2048):
|
|
Last sector, +/-sectors or +/-size{K,M,G,T,P} (2048-31116287, default 31116287): +25M
|
|
|
|
Created a new partition 1 of type 'Linux' and of size 25 MiB.
|
|
|
|
Command (m for help): w
|
|
The partition table has been altered.
|
|
Calling ioctl() to re-read partition table.
|
|
Syncing disks.
|
|
```
|
|
|
|
Use [LUKS](https://askubuntu.com/questions/97196/how-secure-is-an-encrypted-luks-filesystem) to encrypt the new partition:
|
|
|
|
```console
|
|
$ sudo cryptsetup luksFormat /dev/mmcblk0p1
|
|
|
|
WARNING!
|
|
========
|
|
This will overwrite data on /dev/mmcblk0p1 irrevocably.
|
|
|
|
Are you sure? (Type uppercase yes): YES
|
|
Enter passphrase for /dev/mmcblk0p1:
|
|
Verify passphrase:
|
|
```
|
|
|
|
Mount the partition:
|
|
|
|
```console
|
|
$ sudo cryptsetup luksOpen /dev/mmcblk0p1 secret
|
|
Enter passphrase for /dev/mmcblk0p1:
|
|
```
|
|
|
|
Create a filesystem:
|
|
|
|
```console
|
|
$ sudo mkfs.ext2 /dev/mapper/secret -L gpg-$(date +%F)
|
|
Creating filesystem with 9216 1k blocks and 2304 inodes
|
|
Superblock backups stored on blocks:
|
|
8193
|
|
|
|
Allocating group tables: done
|
|
Writing inode tables: done
|
|
Writing superblocks and filesystem accounting information: done
|
|
```
|
|
|
|
Mount the filesystem and copy the temporary directory with the keyring:
|
|
|
|
```console
|
|
$ sudo mkdir /mnt/encrypted-storage
|
|
|
|
$ sudo mount /dev/mapper/secret /mnt/encrypted-storage
|
|
|
|
$ sudo cp -avi $GNUPGHOME /mnt/encrypted-storage/
|
|
```
|
|
|
|
**Optional** Backup the OneRNG package:
|
|
|
|
```console
|
|
$ sudo cp onerng_3.6-1_all.deb /mnt/encrypted-storage/
|
|
```
|
|
|
|
Keep the backup mounted if you plan on setting up two or more keys as `keytocard` **will [delete](https://lists.gnupg.org/pipermail/gnupg-users/2016-July/056353.html) the local copy** on save.
|
|
|
|
Unmount, close and disconnect the encrypted volume:
|
|
|
|
```console
|
|
$ sudo umount /mnt/encrypted-storage/
|
|
|
|
$ sudo cryptsetup luksClose secret
|
|
```
|
|
|
|
|
|
**OpenBSD**
|
|
|
|
Attach a USB disk and determine its label:
|
|
|
|
```console
|
|
$ dmesg | grep sd.\ at
|
|
sd2 at scsibus5 targ 1 lun 0: <TS-RDF5, SD Transcend, TS37> SCSI4 0/direct removable serial.00000000000000000000
|
|
```
|
|
|
|
Print the existing partitions to make sure it's the right device:
|
|
|
|
```console
|
|
$ doas disklabel -h sd2
|
|
```
|
|
|
|
Initialize the disk by creating an `a` partition with FS type `RAID` and size of 25 Megabytes:
|
|
|
|
```console
|
|
$ doas fdisk -iy sd2
|
|
Writing MBR at offset 0.
|
|
|
|
$ doas disklabel -E sd2
|
|
Label editor (enter '?' for help at any prompt)
|
|
sd2> a a
|
|
offset: [64]
|
|
size: [31101776] 25M
|
|
FS type: [4.2BSD] RAID
|
|
sd2*> w
|
|
sd2> q
|
|
No label changes
|
|
```
|
|
|
|
Encrypt with bioctl:
|
|
|
|
```console
|
|
$ doas bioctl -c C -l sd2a softraid0
|
|
New passphrase:
|
|
Re-type passphrase:
|
|
softraid0: CRYPTO volume attached as sd3
|
|
```
|
|
|
|
Create an `i` partition on the new crypto volume and the filesystem:
|
|
|
|
```console
|
|
$ doas fdisk -iy sd3
|
|
Writing MBR at offset 0.
|
|
|
|
$ doas disklabel -E sd3
|
|
Label editor (enter '?' for help at any prompt)
|
|
sd3> a i
|
|
offset: [64]
|
|
size: [16001]
|
|
FS type: [4.2BSD]
|
|
sd3*> w
|
|
sd3> q
|
|
No label changes.
|
|
|
|
$ doas newfs sd3i
|
|
```
|
|
|
|
Mount the filesystem and copy the temporary directory with the keyring:
|
|
|
|
```console
|
|
$ doas mkdir /mnt/encrypted-storage
|
|
|
|
$ doas mount /dev/sd3i /mnt/encrypted-storage
|
|
|
|
$ doas cp -avi $GNUPGHOME /mnt/encrypted-storage
|
|
```
|
|
|
|
Keep the backup mounted if you plan on setting up two or more keys as `keytocard` **will [delete](https://lists.gnupg.org/pipermail/gnupg-users/2016-July/056353.html) the local copy** on save.
|
|
|
|
Otherwise, unmount and disconnect the encrypted volume:
|
|
|
|
```console
|
|
$ doas umount /mnt/encrypted-storage
|
|
|
|
$ doas bioctl -d sd3
|
|
```
|
|
|
|
See [OpenBSD FAQ#14](https://www.openbsd.org/faq/faq14.html#softraidCrypto) for more information.
|
|
|
|
# Export public keys
|
|
|
|
**Important** Without the *public* key, you will not be able to use GPG to encrypt, decrypt, nor sign messages. However, you will still be able to use YubiKey for SSH authentication.
|
|
|
|
Create another partition on the removable storage device to store the public key, or reconnect networking and upload to a key server.
|
|
|
|
**Linux**
|
|
|
|
```console
|
|
$ sudo fdisk /dev/mmcblk0
|
|
|
|
Command (m for help): n
|
|
Partition type
|
|
p primary (1 primary, 0 extended, 3 free)
|
|
e extended (container for logical partitions)
|
|
Select (default p):
|
|
Partition number (2-4, default 2):
|
|
First sector (22528-31116287, default 22528):
|
|
Last sector, +sectors or +size{K,M,G,T,P} (22528-31116287, default 31116287): +25M
|
|
|
|
Created a new partition 2 of type 'Linux' and of size 25 MiB.
|
|
|
|
Command (m for help): w
|
|
The partition table has been altered.
|
|
Calling ioctl() to re-read partition table.
|
|
Syncing disks.
|
|
|
|
$ sudo mkfs.ext2 /dev/mmcblk0p2
|
|
Creating filesystem with 10240 1k blocks and 2560 inodes
|
|
Superblock backups stored on blocks:
|
|
8193
|
|
|
|
Allocating group tables: done
|
|
Writing inode tables: done
|
|
Writing superblocks and filesystem accounting information: done
|
|
|
|
$ sudo mkdir /mnt/public
|
|
|
|
$ sudo mount /dev/mmcblk0p2 /mnt/public/
|
|
|
|
$ gpg --armor --export $KEYID | sudo tee /mnt/public/gpg-$KEYID-$(date +%F).asc
|
|
```
|
|
|
|
**OpenBSD**
|
|
|
|
```console
|
|
$ doas disklabel -E sd2
|
|
Label editor (enter '?' for help at any prompt)
|
|
sd2> a b
|
|
offset: [32130]
|
|
size: [31069710] 25M
|
|
FS type: [swap] 4.2BSD
|
|
sd2*> w
|
|
sd2> q
|
|
No label changes.
|
|
|
|
$ doas newfs sd2b
|
|
|
|
$ doas mkdir /mnt/public
|
|
|
|
$ doas mount /dev/sd2b /mnt/public
|
|
|
|
$ gpg --armor --export $KEYID | doas tee /mnt/public/gpg-$KEYID-$(date +%F).asc
|
|
```
|
|
|
|
**Windows**
|
|
|
|
```console
|
|
$ gpg -o \path\to\dir\pubkey.gpg --armor --export $KEYID
|
|
```
|
|
|
|
**Keyserver**
|
|
|
|
(Optional) Upload the public key to a [public keyserver](https://debian-administration.org/article/451/Submitting_your_GPG_key_to_a_keyserver):
|
|
|
|
```console
|
|
$ gpg --send-key $KEYID
|
|
|
|
$ gpg --keyserver pgp.mit.edu --send-key $KEYID
|
|
|
|
$ gpg --keyserver keys.gnupg.net --send-key $KEYID
|
|
|
|
$ gpg --keyserver hkps://keyserver.ubuntu.com:443 --send-key $KEYID
|
|
```
|
|
|
|
After some time, the public key will propagate to [other](https://pgp.key-server.io/pks/lookup?search=doc%40duh.to&fingerprint=on&op=vindex) [servers](https://pgp.mit.edu/pks/lookup?search=doc%40duh.to&op=index).
|
|
|
|
# Configure Smartcard
|
|
|
|
Plug in a YubiKey and use GPG to configure it as a smartcard:
|
|
|
|
```console
|
|
$ gpg --card-edit
|
|
Reader ...........: Yubico Yubikey 4 OTP U2F CCID
|
|
Application ID ...: D2760001240102010006055532110000
|
|
Version ..........: 3.4
|
|
Manufacturer .....: Yubico
|
|
Serial number ....: 05553211
|
|
Name of cardholder: [not set]
|
|
Language prefs ...: [not set]
|
|
Sex ..............: unspecified
|
|
URL of public key : [not set]
|
|
Login data .......: [not set]
|
|
Signature PIN ....: not forced
|
|
Key attributes ...: rsa2048 rsa2048 rsa2048
|
|
Max. PIN lengths .: 127 127 127
|
|
PIN retry counter : 3 0 3
|
|
Signature counter : 0
|
|
Signature key ....: [none]
|
|
Encryption key....: [none]
|
|
Authentication key: [none]
|
|
General key info..: [none]
|
|
```
|
|
|
|
**Note** If the card is locked, see [Reset](#reset).
|
|
|
|
**Windows**
|
|
|
|
Use the [YubiKey Manager](https://developers.yubico.com/yubikey-manager) application (note, this is not the similarly named older YubiKey NEO Manager) to enable CCID functionality.
|
|
|
|
## Change PIN
|
|
|
|
The [GPG interface](https://developers.yubico.com/PGP/) is separate from other modules on a Yubikey such as the [PIV interface](https://developers.yubico.com/PIV/Introduction/YubiKey_and_PIV.html). The GPG interface has its own *PIN*, *Admin PIN*, and *Reset Code* - these should be changed from default values!
|
|
|
|
Entering the user *PIN* incorrectly three times will cause the PIN to become blocked; it can be unblocked with either the *Admin PIN* or *Reset Code*.
|
|
|
|
Entering the *Admin PIN* or *Reset Code* incorrectly three times destroys all GPG data on the card. The Yubikey will have to be reconfigured.
|
|
|
|
Name | Default Value | Use
|
|
-----------|---------------|-------------------------------------------------------------
|
|
PIN | `123456` | decrypt and authenticate (SSH)
|
|
Admin PIN | `12345678` | reset *PIN*, change *Reset Code*, add keys and owner information
|
|
Reset code | _**None**_ | reset *PIN* ([more information](https://forum.yubico.com/viewtopicd01c.html?p=9055#p9055))
|
|
|
|
Values are valid up to 127 ASCII characters and must be at least 6 (*PIN*) or 8 (*Admin PIN*, *Reset Code*) characters. See the GnuPG documentation on [Managing PINs](https://www.gnupg.org/howtos/card-howto/en/ch03s02.html) for details.
|
|
|
|
To update the GPG PINs on the Yubikey:
|
|
|
|
```console
|
|
gpg/card> admin
|
|
Admin commands are allowed
|
|
|
|
gpg/card> passwd
|
|
gpg: OpenPGP card no. D2760001240102010006055532110000 detected
|
|
|
|
1 - change PIN
|
|
2 - unblock PIN
|
|
3 - change Admin PIN
|
|
4 - set the Reset Code
|
|
Q - quit
|
|
|
|
Your selection? 3
|
|
PIN changed.
|
|
|
|
1 - change PIN
|
|
2 - unblock PIN
|
|
3 - change Admin PIN
|
|
4 - set the Reset Code
|
|
Q - quit
|
|
|
|
Your selection? 1
|
|
PIN changed.
|
|
|
|
1 - change PIN
|
|
2 - unblock PIN
|
|
3 - change Admin PIN
|
|
4 - set the Reset Code
|
|
Q - quit
|
|
|
|
Your selection? q
|
|
```
|
|
|
|
The number of retry attempts can be changed with the following command, documented [here](https://docs.yubico.com/software/yubikey/tools/ykman/OpenPGP_Commands.html#ykman-openpgp-access-set-retries-options-pin-retries-reset-code-retries-admin-pin-retries):
|
|
|
|
```bash
|
|
ykman openpgp access set-retries 5 5 5
|
|
```
|
|
|
|
## Set information
|
|
|
|
Some fields are optional.
|
|
|
|
```console
|
|
gpg/card> name
|
|
Cardholder's surname: Duh
|
|
Cardholder's given name: Dr
|
|
|
|
gpg/card> lang
|
|
Language preferences: en
|
|
|
|
gpg/card> login
|
|
Login data (account name): doc@duh.to
|
|
|
|
gpg/card> list
|
|
|
|
Application ID ...: D2760001240102010006055532110000
|
|
Version ..........: 3.4
|
|
Manufacturer .....: unknown
|
|
Serial number ....: 05553211
|
|
Name of cardholder: Dr Duh
|
|
Language prefs ...: en
|
|
Sex ..............: unspecified
|
|
URL of public key : [not set]
|
|
Login data .......: doc@duh.to
|
|
Private DO 4 .....: [not set]
|
|
Signature PIN ....: not forced
|
|
Key attributes ...: rsa2048 rsa2048 rsa2048
|
|
Max. PIN lengths .: 127 127 127
|
|
PIN retry counter : 3 0 3
|
|
Signature counter : 0
|
|
Signature key ....: [none]
|
|
Encryption key....: [none]
|
|
Authentication key: [none]
|
|
General key info..: [none]
|
|
|
|
gpg/card> quit
|
|
```
|
|
|
|
# Transfer keys
|
|
|
|
**Important** Transferring keys to YubiKey using `keytocard` is a destructive, one-way operation only. Make sure you've made a backup before proceeding: `keytocard` converts the local, on-disk key into a stub, which means the on-disk copy is no longer usable to transfer to subsequent security key devices or mint additional keys.
|
|
|
|
Previous GPG versions required the `toggle` command before selecting keys. The currently selected key(s) are indicated with an `*`. When moving keys only one key should be selected at a time.
|
|
|
|
```console
|
|
$ gpg --edit-key $KEYID
|
|
|
|
Secret key is available.
|
|
|
|
sec rsa4096/0xFF3E7D88647EBCDB
|
|
created: 2017-10-09 expires: never usage: C
|
|
trust: ultimate validity: ultimate
|
|
ssb rsa4096/0xBECFA3C1AE191D15
|
|
created: 2017-10-09 expires: 2018-10-09 usage: S
|
|
ssb rsa4096/0x5912A795E90DD2CF
|
|
created: 2017-10-09 expires: 2018-10-09 usage: E
|
|
ssb rsa4096/0x3F29127E79649A3D
|
|
created: 2017-10-09 expires: 2018-10-09 usage: A
|
|
[ultimate] (1). Dr Duh <doc@duh.to>
|
|
```
|
|
|
|
## Signing
|
|
|
|
You will be prompted for the master key passphrase and Admin PIN.
|
|
|
|
Select and transfer the signature key.
|
|
|
|
```console
|
|
gpg> key 1
|
|
|
|
sec rsa4096/0xFF3E7D88647EBCDB
|
|
created: 2017-10-09 expires: never usage: C
|
|
trust: ultimate validity: ultimate
|
|
ssb* rsa4096/0xBECFA3C1AE191D15
|
|
created: 2017-10-09 expires: 2018-10-09 usage: S
|
|
ssb rsa4096/0x5912A795E90DD2CF
|
|
created: 2017-10-09 expires: 2018-10-09 usage: E
|
|
ssb rsa4096/0x3F29127E79649A3D
|
|
created: 2017-10-09 expires: 2018-10-09 usage: A
|
|
[ultimate] (1). Dr Duh <doc@duh.to>
|
|
|
|
gpg> keytocard
|
|
Please select where to store the key:
|
|
(1) Signature key
|
|
(3) Authentication key
|
|
Your selection? 1
|
|
|
|
You need a passphrase to unlock the secret key for
|
|
user: "Dr Duh <doc@duh.to>"
|
|
4096-bit RSA key, ID 0xBECFA3C1AE191D15, created 2016-05-24
|
|
```
|
|
|
|
## Encryption
|
|
|
|
Type `key 1` again to de-select and `key 2` to select the next key:
|
|
|
|
```console
|
|
gpg> key 1
|
|
|
|
gpg> key 2
|
|
|
|
sec rsa4096/0xFF3E7D88647EBCDB
|
|
created: 2017-10-09 expires: never usage: C
|
|
trust: ultimate validity: ultimate
|
|
ssb rsa4096/0xBECFA3C1AE191D15
|
|
created: 2017-10-09 expires: 2018-10-09 usage: S
|
|
ssb* rsa4096/0x5912A795E90DD2CF
|
|
created: 2017-10-09 expires: 2018-10-09 usage: E
|
|
ssb rsa4096/0x3F29127E79649A3D
|
|
created: 2017-10-09 expires: 2018-10-09 usage: A
|
|
[ultimate] (1). Dr Duh <doc@duh.to>
|
|
|
|
gpg> keytocard
|
|
Please select where to store the key:
|
|
(2) Encryption key
|
|
Your selection? 2
|
|
|
|
[...]
|
|
```
|
|
|
|
## Authentication
|
|
|
|
Type `key 2` again to deselect and `key 3` to select the last key:
|
|
|
|
```console
|
|
gpg> key 2
|
|
|
|
gpg> key 3
|
|
|
|
sec rsa4096/0xFF3E7D88647EBCDB
|
|
created: 2017-10-09 expires: never usage: C
|
|
trust: ultimate validity: ultimate
|
|
ssb rsa4096/0xBECFA3C1AE191D15
|
|
created: 2017-10-09 expires: 2018-10-09 usage: S
|
|
ssb rsa4096/0x5912A795E90DD2CF
|
|
created: 2017-10-09 expires: 2018-10-09 usage: E
|
|
ssb* rsa4096/0x3F29127E79649A3D
|
|
created: 2017-10-09 expires: 2018-10-09 usage: A
|
|
[ultimate] (1). Dr Duh <doc@duh.to>
|
|
|
|
gpg> keytocard
|
|
Please select where to store the key:
|
|
(3) Authentication key
|
|
Your selection? 3
|
|
```
|
|
|
|
Save and quit:
|
|
|
|
```console
|
|
gpg> save
|
|
```
|
|
|
|
# Verify card
|
|
|
|
Verify the sub-keys have been moved to YubiKey as indicated by `ssb>`:
|
|
|
|
```console
|
|
$ gpg -K
|
|
/tmp.FLZC0xcM/pubring.kbx
|
|
-------------------------------------------------------------------------
|
|
sec rsa4096/0xFF3E7D88647EBCDB 2017-10-09 [C]
|
|
Key fingerprint = 011C E16B D45B 27A5 5BA8 776D FF3E 7D88 647E BCDB
|
|
uid Dr Duh <doc@duh.to>
|
|
ssb> rsa4096/0xBECFA3C1AE191D15 2017-10-09 [S] [expires: 2018-10-09]
|
|
ssb> rsa4096/0x5912A795E90DD2CF 2017-10-09 [E] [expires: 2018-10-09]
|
|
ssb> rsa4096/0x3F29127E79649A3D 2017-10-09 [A] [expires: 2018-10-09]
|
|
```
|
|
|
|
# Multiple YubiKeys
|
|
|
|
To provision additional security keys, restore the master key backup and repeat the [Configure Smartcard](#configure-smartcard) procedure.
|
|
|
|
```console
|
|
$ mv -vi $GNUPGHOME $GNUPGHOME.1
|
|
renamed '/tmp.FLZC0xcM' -> '/tmp.FLZC0xcM.1'
|
|
|
|
$ cp -avi /mnt/encrypted-storage/tmp.XXX $GNUPGHOME
|
|
'/mnt/encrypted-storage/tmp.FLZC0xcM' -> '/tmp.FLZC0xcM'
|
|
|
|
$ cd $GNUPGHOME
|
|
```
|
|
|
|
## Switching between two or more Yubikeys.
|
|
|
|
When you add a GPG key to a Yubikey using the *keytocard* command, GPG deletes the key from your keyring and adds a *stub* pointing to that exact Yubikey (the stub identifies the GPG KeyID and the Yubikey's serial number).
|
|
|
|
However, when you do this same operation for a second Yubikey, the stub in your keyring is overwritten by the *keytocard* operation and now the stub points to your second Yubikey. Adding more repeats this overwriting operation.
|
|
|
|
In other words, the stub will point ONLY to the LAST Yubikey written to.
|
|
|
|
When using GPG key operations with the GPG key you placed onto the Yubikeys, GPG will request a specific Yubikey asking that you insert a Yubikey with a given serial number (referenced by the stub). GPG will not recognise another Yubikey with a different serial number without manual intervention.
|
|
|
|
You can force GPG to scan the card and re-create the stubs to point to another Yubikey.
|
|
|
|
Having created two (or more Yubikeys) with the same GPG key (as described above) where the stubs are pointing to the second Yubikey:
|
|
|
|
Insert the first Yubikey (which has a different serial numnber) and run the following command:
|
|
|
|
```console
|
|
$ gpg-connect-agent "scd serialno" "learn --force" /bye
|
|
```
|
|
GPG will then scan your first Yubikey for GPG keys and recreate the stubs to point to the GPG keyID and Yubikey Serial number of this first Yubikey.
|
|
|
|
To return to using the second Yubikey just repeat (insert other Yubikey and re-run command).
|
|
|
|
Obviously this command is not easy to remember so it is recommended to either create a script or a shell alias to make this more user friendly.
|
|
|
|
# Cleanup
|
|
|
|
Ensure you have:
|
|
|
|
* Saved encryption, signing and authentication sub-keys to YubiKey (`gpg -K` should show `ssb>` for sub-keys).
|
|
* Saved the YubiKey user and admin PINs which you changed from defaults.
|
|
* Saved the password to the GPG master key in a *permanent* location.
|
|
* Saved a copy of the master key, sub-keys and revocation certificate on an encrypted volume, to be stored offline.
|
|
* Saved the password to that encrypted volume in a separate location.
|
|
* Saved a copy of the public key somewhere easily accessible later.
|
|
|
|
Reboot or [securely delete](http://srm.sourceforge.net/) `$GNUPGHOME` and remove the secret keys from the GPG keyring:
|
|
|
|
```console
|
|
$ sudo srm -r $GNUPGHOME || sudo rm -rf $GNUPGHOME
|
|
|
|
$ gpg --delete-secret-key $KEYID
|
|
|
|
$ unset GNUPGHOME
|
|
```
|
|
|
|
**Important** Make sure you have securely erased all generated keys and revocation certificates if an ephemeral enviroment was not used!
|
|
|
|
# Using keys
|
|
|
|
Download [drduh/config/gpg.conf](https://github.com/drduh/config/blob/master/gpg.conf):
|
|
|
|
```console
|
|
$ cd ~/.gnupg ; wget https://raw.githubusercontent.com/drduh/config/master/gpg.conf
|
|
|
|
$ chmod 600 gpg.conf
|
|
```
|
|
|
|
Install the required packages and mount the non-encrypted volume created earlier:
|
|
|
|
**Linux**
|
|
|
|
```console
|
|
$ sudo apt update && sudo apt install -y gnupg2 gnupg-agent gnupg-curl scdaemon pcscd
|
|
|
|
$ sudo mount /dev/mmcblk0p2 /mnt
|
|
```
|
|
|
|
**OpenBSD**
|
|
|
|
```console
|
|
$ doas pkg_add gnupg pcsc-tools
|
|
|
|
$ doas mount /dev/sd2b /mnt
|
|
```
|
|
|
|
Import the public key file:
|
|
|
|
```console
|
|
$ gpg --import /mnt/gpg-0x*.asc
|
|
gpg: key 0xFF3E7D88647EBCDB: public key "Dr Duh <doc@duh.to>" imported
|
|
gpg: Total number processed: 1
|
|
gpg: imported: 1
|
|
```
|
|
|
|
Or download the public key from a keyserver:
|
|
|
|
```console
|
|
$ gpg --recv $KEYID
|
|
gpg: requesting key 0xFF3E7D88647EBCDB from hkps server hkps.pool.sks-keyservers.net
|
|
[...]
|
|
gpg: key 0xFF3E7D88647EBCDB: public key "Dr Duh <doc@duh.to>" imported
|
|
gpg: Total number processed: 1
|
|
gpg: imported: 1
|
|
```
|
|
|
|
Edit the master key to assign it ultimate trust by selecting `trust` and `5`:
|
|
|
|
```console
|
|
$ export KEYID=0xFF3E7D88647EBCDB
|
|
|
|
$ gpg --edit-key $KEYID
|
|
|
|
gpg> trust
|
|
pub 4096R/0xFF3E7D88647EBCDB created: 2016-05-24 expires: never usage: C
|
|
trust: unknown validity: unknown
|
|
sub 4096R/0xBECFA3C1AE191D15 created: 2017-10-09 expires: 2018-10-09 usage: S
|
|
sub 4096R/0x5912A795E90DD2CF created: 2017-10-09 expires: 2018-10-09 usage: E
|
|
sub 4096R/0x3F29127E79649A3D created: 2017-10-09 expires: 2018-10-09 usage: A
|
|
[ unknown] (1). Dr Duh <doc@duh.to>
|
|
|
|
Please decide how far you trust this user to correctly verify other users' keys
|
|
(by looking at passports, checking fingerprints from different sources, etc.)
|
|
|
|
1 = I don't know or won't say
|
|
2 = I do NOT trust
|
|
3 = I trust marginally
|
|
4 = I trust fully
|
|
5 = I trust ultimately
|
|
m = back to the main menu
|
|
|
|
Your decision? 5
|
|
Do you really want to set this key to ultimate trust? (y/N) y
|
|
|
|
pub 4096R/0xFF3E7D88647EBCDB created: 2016-05-24 expires: never usage: C
|
|
trust: ultimate validity: unknown
|
|
sub 4096R/0xBECFA3C1AE191D15 created: 2017-10-09 expires: 2018-10-09 usage: S
|
|
sub 4096R/0x5912A795E90DD2CF created: 2017-10-09 expires: 2018-10-09 usage: E
|
|
sub 4096R/0x3F29127E79649A3D created: 2017-10-09 expires: 2018-10-09 usage: A
|
|
[ unknown] (1). Dr Duh <doc@duh.to>
|
|
|
|
gpg> quit
|
|
```
|
|
|
|
Remove and re-insert YubiKey and check the status:
|
|
|
|
```console
|
|
$ gpg --card-status
|
|
Reader ...........: Yubico YubiKey OTP FIDO CCID 00 00
|
|
Application ID ...: D2760001240102010006055532110000
|
|
Version ..........: 3.4
|
|
Manufacturer .....: Yubico
|
|
Serial number ....: 05553211
|
|
Name of cardholder: Dr Duh
|
|
Language prefs ...: en
|
|
Sex ..............: unspecified
|
|
URL of public key : [not set]
|
|
Login data .......: doc@duh.to
|
|
Signature PIN ....: not forced
|
|
Key attributes ...: rsa4096 rsa4096 rsa4096
|
|
Max. PIN lengths .: 127 127 127
|
|
PIN retry counter : 3 3 3
|
|
Signature counter : 0
|
|
Signature key ....: 07AA 7735 E502 C5EB E09E B8B0 BECF A3C1 AE19 1D15
|
|
created ....: 2016-05-24 23:22:01
|
|
Encryption key....: 6F26 6F46 845B BEB8 BDF3 7E9B 5912 A795 E90D D2CF
|
|
created ....: 2016-05-24 23:29:03
|
|
Authentication key: 82BE 7837 6A3F 2E7B E556 5E35 3F29 127E 7964 9A3D
|
|
created ....: 2016-05-24 23:36:40
|
|
General key info..: pub 4096R/0xBECFA3C1AE191D15 2016-05-24 Dr Duh <doc@duh.to>
|
|
sec# 4096R/0xFF3E7D88647EBCDB created: 2016-05-24 expires: never
|
|
ssb> 4096R/0xBECFA3C1AE191D15 created: 2017-10-09 expires: 2018-10-09
|
|
card-no: 0006 05553211
|
|
ssb> 4096R/0x5912A795E90DD2CF created: 2017-10-09 expires: 2018-10-09
|
|
card-no: 0006 05553211
|
|
ssb> 4096R/0x3F29127E79649A3D created: 2017-10-09 expires: 2018-10-09
|
|
card-no: 0006 05553211
|
|
```
|
|
|
|
`sec#` indicates the master key is not available (as it should be stored encrypted offline).
|
|
|
|
**Note** If you see `General key info..: [none]` in the output instead - go back and import the public key using the previous step.
|
|
|
|
Encrypt a message to your own key (useful for storing password credentials and other data):
|
|
|
|
```console
|
|
$ echo "test message string" | gpg --encrypt --armor --recipient $KEYID -o encrypted.txt
|
|
```
|
|
|
|
To encrypt to multiple recipients (or to multiple keys):
|
|
|
|
```console
|
|
$ echo "test message string" | gpg --encrypt --armor --recipient $KEYID_0 --recipient $KEYID_1 --recipient $KEYID_2 -o encrypted.txt
|
|
```
|
|
|
|
Decrypt the message:
|
|
|
|
```console
|
|
$ gpg --decrypt --armor encrypted.txt
|
|
gpg: anonymous recipient; trying secret key 0x0000000000000000 ...
|
|
gpg: okay, we are the anonymous recipient.
|
|
gpg: encrypted with RSA key, ID 0x0000000000000000
|
|
test message string
|
|
```
|
|
|
|
Sign a message:
|
|
|
|
```console
|
|
$ echo "test message string" | gpg --armor --clearsign > signed.txt
|
|
```
|
|
|
|
Verify the signature:
|
|
|
|
```console
|
|
$ gpg --verify signed.txt
|
|
gpg: Signature made Wed 25 May 2016 00:00:00 AM UTC
|
|
gpg: using RSA key 0xBECFA3C1AE191D15
|
|
gpg: Good signature from "Dr Duh <doc@duh.to>" [ultimate]
|
|
Primary key fingerprint: 011C E16B D45B 27A5 5BA8 776D FF3E 7D88 647E BCDB
|
|
Subkey fingerprint: 07AA 7735 E502 C5EB E09E B8B0 BECF A3C1 AE19 1D15
|
|
```
|
|
|
|
Use a [shell function](https://github.com/drduh/config/blob/master/zshrc) to make encrypting files easier:
|
|
|
|
```
|
|
secret () {
|
|
output=~/"${1}".$(date +%s).enc
|
|
gpg --encrypt --armor --output ${output} -r 0x0000 -r 0x0001 -r 0x0002 "${1}" && echo "${1} -> ${output}"
|
|
}
|
|
|
|
reveal () {
|
|
output=$(echo "${1}" | rev | cut -c16- | rev)
|
|
gpg --decrypt --output ${output} "${1}" && echo "${1} -> ${output}"
|
|
}
|
|
```
|
|
|
|
```console
|
|
$ secret document.pdf
|
|
document.pdf -> document.pdf.1580000000.enc
|
|
|
|
$ reveal document.pdf.1580000000.enc
|
|
gpg: anonymous recipient; trying secret key 0xFF3E7D88647EBCDB ...
|
|
gpg: okay, we are the anonymous recipient.
|
|
gpg: encrypted with RSA key, ID 0x0000000000000000
|
|
document.pdf.1580000000.enc -> document.pdf
|
|
```
|
|
|
|
# Rotating keys
|
|
|
|
PGP does not provide forward secrecy - a compromised key may be used to decrypt all past messages. Although keys stored on YubiKey are difficult to steal, it is not impossible - the key and PIN could be taken, or a vulnerability may be discovered in key hardware or the random number generator used to create them, for example. Therefore, it is good practice to occassionally rotate sub-keys.
|
|
|
|
When a sub-key expires, it can either be renewed or replaced. Both actions require access to the offline master key. Renewing sub-keys by updating their expiration date indicates you are still in possession of the offline master key and is more convenient.
|
|
|
|
Replacing keys, on the other hand, is less convenient but more secure: the new sub-keys will **not** be able to decrypt previous messages, authenticate with SSH, etc. Contacts will need to receive the updated public key and any encrypted secrets need to be decrypted and re-encrypted to new sub-keys to be usable. This process is functionally equivalent to "losing" the YubiKey and provisioning a new one. However, you will always be able to decrypt previous messages using the offline encrypted backup of the original keys.
|
|
|
|
Neither rotation method is superior and it's up to personal philosophy on identity management and individual threat model to decide which one to use, or whether to expire sub-keys at all. Ideally, sub-keys would be ephemeral: used only once for each encryption, signing and authentication event, however in practice that is not really feasible nor worthwhile with YubiKey. Advanced users may want to dedicate an offline device for more frequent key rotations and ease of provisioning.
|
|
|
|
## Setup environment
|
|
|
|
To renew or rotate sub-keys, follow the same process as generating keys: boot to a secure environment, install required software and disconnect networking.
|
|
|
|
Connect the offline secret storage device with the master keys and identify the disk label:
|
|
|
|
```console
|
|
$ sudo dmesg | tail
|
|
mmc0: new high speed SDHC card at address a001
|
|
mmcblk0: mmc0:a001 SS16G 14.8 GiB (ro)
|
|
mmcblk0: p1 p2
|
|
```
|
|
|
|
Decrypt and mount the offline volume:
|
|
|
|
```console
|
|
$ sudo cryptsetup luksOpen /dev/mmcblk0p1 secret
|
|
Enter passphrase for /dev/mmcblk0p1:
|
|
|
|
$ sudo mount /dev/mapper/secret /mnt/encrypted-storage
|
|
```
|
|
|
|
Import the master key and configuration to a temporary working directory:
|
|
|
|
```console
|
|
$ export GNUPGHOME=$(mktemp -d -t gnupg_$(date +%Y%m%d%H%M)_XXX)
|
|
|
|
$ gpg --import /mnt/encrypted-storage/tmp.XXX/mastersub.key
|
|
|
|
$ cp -v /mnt/encrypted-storage/tmp.XXX/gpg.conf $GNUPGHOME
|
|
```
|
|
|
|
Edit the master key:
|
|
|
|
```console
|
|
$ export KEYID=0xFF3E7D88647EBCDB
|
|
|
|
$ gpg --expert --edit-key $KEYID
|
|
|
|
Secret key is available
|
|
[...]
|
|
```
|
|
|
|
## Renewing sub-keys
|
|
|
|
Renewing sub-keys is simpler: you do not need to generate new keys, move keys to the YubiKey, or update any SSH public keys linked to the GPG key. All you need to do is to change the expiry time associated with the public key (which requires access to the master key you just loaded) and then to export that public key and import it on any computer where you wish to use the **GPG** (as distinct from the SSH) key.
|
|
|
|
To change the expiration date of all sub-keys, start by selecting all keys:
|
|
|
|
```console
|
|
$ gpg --edit-key $KEYID
|
|
|
|
Secret key is available.
|
|
|
|
sec rsa4096/0xFF3E7D88647EBCDB
|
|
created: 2017-10-09 expires: never usage: C
|
|
trust: ultimate validity: ultimate
|
|
ssb rsa4096/0xBECFA3C1AE191D15
|
|
created: 2017-10-09 expires: 2018-10-09 usage: S
|
|
ssb rsa4096/0x5912A795E90DD2CF
|
|
created: 2017-10-09 expires: 2018-10-09 usage: E
|
|
ssb rsa4096/0x3F29127E79649A3D
|
|
created: 2017-10-09 expires: 2018-10-09 usage: A
|
|
[ultimate] (1). Dr Duh <doc@duh.to>
|
|
|
|
gpg> key 1
|
|
|
|
Secret key is available.
|
|
|
|
sec rsa4096/0xFF3E7D88647EBCDB
|
|
created: 2017-10-09 expires: never usage: C
|
|
trust: ultimate validity: ultimate
|
|
ssb* rsa4096/0xBECFA3C1AE191D15
|
|
created: 2017-10-09 expires: 2018-10-09 usage: S
|
|
ssb rsa4096/0x5912A795E90DD2CF
|
|
created: 2017-10-09 expires: 2018-10-09 usage: E
|
|
ssb rsa4096/0x3F29127E79649A3D
|
|
created: 2017-10-09 expires: 2018-10-09 usage: A
|
|
[ultimate] (1). Dr Duh <doc@duh.to>
|
|
|
|
gpg> key 2
|
|
|
|
Secret key is available.
|
|
|
|
sec rsa4096/0xFF3E7D88647EBCDB
|
|
created: 2017-10-09 expires: never usage: C
|
|
trust: ultimate validity: ultimate
|
|
ssb* rsa4096/0xBECFA3C1AE191D15
|
|
created: 2017-10-09 expires: 2018-10-09 usage: S
|
|
ssb* rsa4096/0x5912A795E90DD2CF
|
|
created: 2017-10-09 expires: 2018-10-09 usage: E
|
|
ssb rsa4096/0x3F29127E79649A3D
|
|
created: 2017-10-09 expires: 2018-10-09 usage: A
|
|
[ultimate] (1). Dr Duh <doc@duh.to>
|
|
|
|
gpg> key 3
|
|
|
|
Secret key is available.
|
|
|
|
sec rsa4096/0xFF3E7D88647EBCDB
|
|
created: 2017-10-09 expires: never usage: C
|
|
trust: ultimate validity: ultimate
|
|
ssb* rsa4096/0xBECFA3C1AE191D15
|
|
created: 2017-10-09 expires: 2018-10-09 usage: S
|
|
ssb* rsa4096/0x5912A795E90DD2CF
|
|
created: 2017-10-09 expires: 2018-10-09 usage: E
|
|
ssb* rsa4096/0x3F29127E79649A3D
|
|
created: 2017-10-09 expires: 2018-10-09 usage: A
|
|
[ultimate] (1). Dr Duh <doc@duh.to>
|
|
```
|
|
|
|
Then, use the `expire` command to set a new expiration date. (Despite the name, this will not cause currently valid keys to become expired.)
|
|
|
|
```console
|
|
gpg> expire
|
|
Changing expiration time for a subkey.
|
|
Please specify how long the key should be valid.
|
|
0 = key does not expire
|
|
<n> = key expires in n days
|
|
<n>w = key expires in n weeks
|
|
<n>m = key expires in n months
|
|
<n>y = key expires in n years
|
|
Key is valid for? (0)
|
|
```
|
|
Follow these prompts to set a new expiration date, then `save` to save your changes.
|
|
|
|
Next, export the public key:
|
|
|
|
```console
|
|
$ gpg --armor --export $KEYID > gpg-$KEYID-$(date +%F).asc
|
|
```
|
|
|
|
Transfer that public key to the computer from which you use your GPG key, and then import it with:
|
|
|
|
```console
|
|
$ gpg --import gpg-0x*.asc
|
|
```
|
|
|
|
This will extend the validity of your GPG key and will allow you to use it for SSH authorization. Note that you do _not_ need to update the SSH public key located on remote servers.
|
|
|
|
## Rotating keys
|
|
|
|
Rotating keys is more a bit more involved. First, follow the original steps to generate each sub-key. Previous sub-keys may be kept or deleted from the identity.
|
|
|
|
Finish by exporting new keys:
|
|
|
|
```console
|
|
$ gpg --armor --export-secret-keys $KEYID > $GNUPGHOME/mastersub.key
|
|
|
|
$ gpg --armor --export-secret-subkeys $KEYID > $GNUPGHOME/sub.key
|
|
```
|
|
|
|
Copy the **new** temporary working directory to encrypted offline storage, which should still be mounted:
|
|
|
|
```console
|
|
$ sudo cp -avi $GNUPGHOME /mnt/encrypted-storage
|
|
```
|
|
|
|
There should now be at least two versions of the master and sub-keys backed up:
|
|
|
|
```console
|
|
$ ls /mnt/encrypted-storage
|
|
lost+found tmp.ykhTOGjR36 tmp.2gyGnyCiHs
|
|
```
|
|
|
|
Unmount and close the encrypted volume:
|
|
|
|
```console
|
|
$ sudo umount /mnt/encrypted-storage
|
|
|
|
$ sudo cryptsetup luksClose /dev/mapper/secret
|
|
```
|
|
|
|
Export the updated public key:
|
|
|
|
```console
|
|
$ sudo mkdir /mnt/public
|
|
|
|
$ sudo mount /dev/mmcblk0p2 /mnt/public
|
|
|
|
$ gpg --armor --export $KEYID | sudo tee /mnt/public/$KEYID-$(date +%F).asc
|
|
|
|
$ sudo umount /mnt/public
|
|
```
|
|
|
|
Disconnect the storage device and follow the original steps to transfer new keys (4, 5 and 6) to the YubiKey, replacing existing ones. Reboot or securely erase the GPG temporary working directory.
|
|
|
|
# Adding notations
|
|
|
|
Notations can be added to user ID(s) and can be used in conjunction with [Keyoxide](https://keyoxide.org) to create [OpenPGP identity proofs](https://keyoxide.org/guides/openpgp-proofs).
|
|
|
|
Adding notations requires access to the master key so we can follow the setup instructions taken from this [section](#setup-environment) of this guide.
|
|
|
|
Please note that there is no need to connect the Yubikey to the setup environment and that we do not need to generate new keys, move keys to the YubiKey, or update any SSH public keys linked to the GPG key.
|
|
|
|
After having completed the environment setup, it is possible to follow any of the guides listed under "Adding proofs" in the Keyoxide ["Guides"](https://keyoxide.org/guides/) page __up until the notation is saved using the `save` command__.
|
|
|
|
At this point the public key can be exported:
|
|
|
|
```console
|
|
$ gpg --export $KEYID > pubkey.asc
|
|
```
|
|
|
|
The public key can now be transferred to the computer where the GPG key is used and it is imported with:
|
|
|
|
```console
|
|
$ gpg --import pubkey.asc
|
|
```
|
|
|
|
N.B.: The `showpref` command can be issued to ensure that the notions were correctly added.
|
|
|
|
It is now possible to continue following the Keyoxide guide and upload the key to WKD or to keys.openpgp.org.
|
|
|
|
# SSH
|
|
|
|
_Note that if you want to use a **YubiKey ONLY for SSH** (and don't really care about PGP/GPG), then [since OpenSSH v8.2](https://www.openssh.com/txt/release-8.2) you alternatively can simply `ssh-keygen -t ed25519-sk` (without requiring anything else from this guide!), as explained [e.g. in this guide](https://github.com/vorburger/vorburger.ch-Notes/blob/develop/security/ed25519-sk.md). Yubico also recently announced support for resident ssh keys under OpenSSH 8.2+ on their blue "security key 5 nfc" as mentioned in their [blog post](https://www.yubico.com/blog/github-now-supports-ssh-security-keys/)._
|
|
|
|
[gpg-agent](https://wiki.archlinux.org/index.php/GnuPG#SSH_agent) supports the OpenSSH ssh-agent protocol (`enable-ssh-support`), as well as Putty's Pageant on Windows (`enable-putty-support`). This means it can be used instead of the traditional ssh-agent / pageant. There are some differences from ssh-agent, notably that gpg-agent does not _cache_ keys rather it converts, encrypts and stores them - persistently - as GPG keys and then makes them available to ssh clients. Any existing ssh private keys that you'd like to keep in `gpg-agent` should be deleted after they've been imported to the GPG agent.
|
|
|
|
When importing the key to `gpg-agent`, you'll be prompted for a passphrase to protect that key within GPG's key store - you may want to use the same passphrase as the original's ssh version. GPG can both cache passphrases for a determined period (ref. `gpg-agent`'s various `cache-ttl` options), and since version 2.1 can store and fetch passphrases via the macOS keychain. Note than when removing the old private key after importing to `gpg-agent`, keep the `.pub` key file around for use in specifying ssh identities (e.g. `ssh -i /path/to/identity.pub`).
|
|
|
|
Probably the biggest thing missing from `gpg-agent`'s ssh agent support is being able to remove keys. `ssh-add -d/-D` have no effect. Instead, you need to use the `gpg-connect-agent` utility to lookup a key's keygrip, match that with the desired ssh key fingerprint (as an MD5) and then delete that keygrip. The [gnupg-users mailing list](https://lists.gnupg.org/pipermail/gnupg-users/2016-August/056499.html) has more information.
|
|
|
|
## Create configuration
|
|
|
|
Create a hardened configuration for gpg-agent by downloading [drduh/config/gpg-agent.conf](https://github.com/drduh/config/blob/master/gpg-agent.conf):
|
|
|
|
```console
|
|
$ cd ~/.gnupg
|
|
|
|
$ wget https://raw.githubusercontent.com/drduh/config/master/gpg-agent.conf
|
|
|
|
$ grep -ve "^#" gpg-agent.conf
|
|
enable-ssh-support
|
|
default-cache-ttl 60
|
|
max-cache-ttl 120
|
|
pinentry-program /usr/bin/pinentry-curses
|
|
```
|
|
|
|
**Important** The `cache-ttl` options do **NOT** apply when using a YubiKey as a smartcard as the PIN is [cached by the smartcard itself](https://dev.gnupg.org/T3362). Therefore, in order to clear the PIN from cache (smartcard equivalent to `default-cache-ttl` and `max-cache-ttl`), you need to unplug the YubiKey.
|
|
|
|
**Tip** Set `pinentry-program /usr/bin/pinentry-gnome3` for a GUI-based prompt. If the _pinentry_ graphical dialog doesn't show and you get this error: `sign_and_send_pubkey: signing failed: agent refused operation`, you may need to install the `dbus-user-session` package and restart the computer for the `dbus` user session to be fully inherited; this is because behind the scenes, `pinentry` complains about `No $DBUS_SESSION_BUS_ADDRESS found`, falls back to `curses` but doesn't find the expected `tty`.
|
|
|
|
On macOS, use `brew install pinentry-mac` and set the program path to `pinentry-program /usr/local/bin/pinentry-mac` or `pinentry-program /usr/local/MacGPG2/libexec/pinentry-mac.app/Contents/MacOS/pinentry-mac` if using MacGPG Suite.
|
|
|
|
## Replace agents
|
|
|
|
To launch `gpg-agent` for use by SSH, use the `gpg-connect-agent /bye` or `gpgconf --launch gpg-agent` commands.
|
|
|
|
Add these to the shell `rc` file:
|
|
|
|
```console
|
|
export GPG_TTY="$(tty)"
|
|
export SSH_AUTH_SOCK="/run/user/$UID/gnupg/S.gpg-agent.ssh"
|
|
gpg-connect-agent updatestartuptty /bye > /dev/null
|
|
```
|
|
|
|
On modern systems, `gpgconf --list-dirs agent-ssh-socket` will automatically set `SSH_AUTH_SOCK` to the correct value and is better than hard-coding to `run/user/$UID/gnupg/S.gpg-agent.ssh`, if available:
|
|
|
|
```console
|
|
export GPG_TTY="$(tty)"
|
|
export SSH_AUTH_SOCK=$(gpgconf --list-dirs agent-ssh-socket)
|
|
gpgconf --launch gpg-agent
|
|
```
|
|
|
|
If you use fish, the correct lines for your `config.fish` would look like this (consider putting them into the `is-interactive` block depending on your use case):
|
|
```fish
|
|
set -x GPG_TTY (tty)
|
|
set -x SSH_AUTH_SOCK (gpgconf --list-dirs agent-ssh-socket)
|
|
gpgconf --launch gpg-agent
|
|
```
|
|
|
|
Note that if you use `ForwardAgent` for ssh-agent forwarding, `SSH_AUTH_SOCK` only needs to be set on the *local* laptop (workstation), where the YubiKey is plugged in. On the *remote* server that we SSH into, `ssh` will automatically set `SSH_AUTH_SOCK` to something like `/tmp/ssh-mXzCzYT2Np/agent.7541` when we connect. We therefore do **NOT** manually set `SSH_AUTH_SOCK` on the server - doing so would break [SSH Agent Forwarding](#remote-machines-ssh-agent-forwarding).
|
|
|
|
If you use `S.gpg-agent.ssh` (see [SSH Agent Forwarding](#remote-machines-ssh-agent-forwarding) for more info), `SSH_AUTH_SOCK` should also be set on the *remote*. However, `GPG_TTY` should not be set on the *remote*, explanation specified in that section.
|
|
|
|
## Copy public key
|
|
|
|
**Note** It is **not** necessary to import the corresponding GPG public key in order to use SSH.
|
|
|
|
Copy and paste the output from `ssh-add` to the server's `authorized_keys` file:
|
|
|
|
```console
|
|
$ ssh-add -L
|
|
ssh-rsa AAAAB4NzaC1yc2EAAAADAQABAAACAz[...]zreOKM+HwpkHzcy9DQcVG2Nw== cardno:000605553211
|
|
```
|
|
|
|
## (Optional) Save public key for identity file configuration
|
|
|
|
By default, SSH attempts to use all the identities available via the agent. It's often a good idea to manage exactly which keys SSH will use to connect to a server, for example to separate different roles or [to avoid being fingerprinted by untrusted ssh servers](https://blog.filippo.io/ssh-whoami-filippo-io/). To do this you'll need to use the command line argument `-i [identity_file]` or the `IdentityFile` and `IdentitiesOnly` options in `.ssh/config`.
|
|
|
|
The argument provided to `IdentityFile` is traditionally the path to the _private_ key file (for example `IdentityFile ~/.ssh/id_rsa`). For the YubiKey - indeed, in general for keys stored in an ssh agent - `IdentityFile` should point to the _public_ key file, `ssh` will select the appropriate private key from those available via the ssh agent. To prevent `ssh` from trying all keys in the agent use the `IdentitiesOnly yes` option along with one or more `-i` or `IdentityFile` options for the target host.
|
|
|
|
To reiterate, with `IdentitiesOnly yes`, `ssh` will not automatically enumerate public keys loaded into `ssh-agent` or `gpg-agent`. This means `publickey` authentication will not proceed unless explicitly named by `ssh -i [identity_file]` or in `.ssh/config` on a per-host basis.
|
|
|
|
In the case of YubiKey usage, to extract the public key from the ssh agent:
|
|
|
|
```console
|
|
$ ssh-add -L | grep "cardno:000605553211" > ~/.ssh/id_rsa_yubikey.pub
|
|
```
|
|
|
|
Then you can explicitly associate this YubiKey-stored key for used with a host, `github.com` for example, as follows:
|
|
|
|
```console
|
|
$ cat << EOF >> ~/.ssh/config
|
|
Host github.com
|
|
IdentitiesOnly yes
|
|
IdentityFile ~/.ssh/id_rsa_yubikey.pub
|
|
EOF
|
|
```
|
|
|
|
## Connect with public key authentication
|
|
|
|
```console
|
|
$ ssh git@github.com -vvv
|
|
[...]
|
|
debug2: key: cardno:000605553211 (0x1234567890),
|
|
debug1: Authentications that can continue: publickey
|
|
debug3: start over, passed a different list publickey
|
|
debug3: preferred gssapi-keyex,gssapi-with-mic,publickey,keyboard-interactive,password
|
|
debug3: authmethod_lookup publickey
|
|
debug3: remaining preferred: keyboard-interactive,password
|
|
debug3: authmethod_is_enabled publickey
|
|
debug1: Next authentication method: publickey
|
|
debug1: Offering RSA public key: cardno:000605553211
|
|
debug3: send_pubkey_test
|
|
debug2: we sent a publickey packet, wait for reply
|
|
debug1: Server accepts key: pkalg ssh-rsa blen 535
|
|
debug2: input_userauth_pk_ok: fp e5:de:a5:74:b1:3e:96:9b:85:46:e7:28:53:b4:82:c3
|
|
debug3: sign_and_send_pubkey: RSA e5:de:a5:74:b1:3e:96:9b:85:46:e7:28:53:b4:82:c3
|
|
debug1: Authentication succeeded (publickey).
|
|
[...]
|
|
```
|
|
|
|
**Tip** To make multiple connections or securely transfer many files, consider using the [ControlMaster](https://en.wikibooks.org/wiki/OpenSSH/Cookbook/Multiplexing) ssh option. Also see [drduh/config/ssh_config](https://github.com/drduh/config/blob/master/ssh_config).
|
|
|
|
## Import SSH keys
|
|
|
|
If there are existing SSH keys that you wish to make available via `gpg-agent`, you'll need to import them. You should then remove the original private keys. When importing the key, `gpg-agent` uses the key's filename as the key's label; this makes it easier to follow where the key originated from. In this example, we're starting with just the YubiKey's key in place and importing `~/.ssh/id_rsa`:
|
|
|
|
```console
|
|
$ ssh-add -l
|
|
4096 SHA256:... cardno:00060123456 (RSA)
|
|
|
|
$ ssh-add ~/.ssh/id_rsa && rm ~/.ssh/id_rsa
|
|
```
|
|
|
|
When invoking `ssh-add`, it will prompt for the SSH key's passphrase if present, then the `pinentry` program will prompt and confirm for a new passphrase to use to encrypt the converted key within the GPG key store.
|
|
|
|
The migrated key will be listed in `ssh-add -l`:
|
|
|
|
```console
|
|
$ ssh-add -l
|
|
4096 SHA256:... cardno:00060123456 (RSA)
|
|
2048 SHA256:... /Users/username/.ssh/id_rsa (RSA)
|
|
```
|
|
|
|
Or to show the keys with MD5 fingerprints, as used by `gpg-connect-agent`'s `KEYINFO` and `DELETE_KEY` commands:
|
|
|
|
```console
|
|
$ ssh-add -E md5 -l
|
|
4096 MD5:... cardno:00060123456 (RSA)
|
|
2048 MD5:... /Users/username/.ssh/id_rsa (RSA)
|
|
```
|
|
|
|
When using the key `pinentry` will be invoked to request the key's passphrase. The passphrase will be cached for up to 10 minutes idle time between uses, to a maximum of 2 hours.
|
|
|
|
## Remote Machines (SSH Agent Forwarding)
|
|
|
|
**Note** SSH Agent Forwarding can [add additional risk](https://matrix.org/blog/2019/05/08/post-mortem-and-remediations-for-apr-11-security-incident/#ssh-agent-forwarding-should-be-disabled) - proceed with caution!
|
|
|
|
There are two methods for ssh-agent forwarding, one is provided by OpenSSH and the other is provided by GnuPG.
|
|
|
|
The latter one may be more insecure as raw socket is just forwarded (not like `S.gpg-agent.extra` with only limited functionality; if `ForwardAgent` implemented by OpenSSH is just forwarding the raw socket, then they are insecure to the same degree). But for the latter one, one convenience is that one may forward once and use this agent everywhere in the remote. So again, proceed with caution!
|
|
|
|
For example, `tmux` does not have some environment variables like `$SSH_AUTH_SOCK` when you ssh into remote and attach an old `tmux` session. In this case if you use `ForwardAgent`, you need to find the socket manually and `export SSH_AUTH_SOCK=/tmp/ssh-agent-xxx/xxxx.socket` for each shell. But with `S.gpg-agent.ssh` in fixed place, one can just use it as ssh-agent in their shell rc file.
|
|
|
|
### Use ssh-agent
|
|
|
|
In the above steps, you have successfully configured a local ssh-agent.
|
|
|
|
You should now be able use `ssh -A remote` on the _local_ machine to log into _remote_, and should then be able to use YubiKey as if it were connected to the remote machine. For example, using e.g. `ssh-add -l` on that remote machine should show the public key from the YubiKey (note `cardno:`). (If you don't want to have to remember to use `ssh -A`, you can use `ForwardAgent yes` in `~/.ssh/config`. As a security best practice, always use `ForwardAgent yes` only for a single `Hostname`, never for all servers.)
|
|
|
|
### Use S.gpg-agent.ssh
|
|
|
|
First you need to go through [Remote Machines (GPG Agent Forwarding)](#remote-machines-gpg-agent-forwarding), know the conditions for gpg-agent forwarding and know the location of `S.gpg-agent.ssh` on both the local and the remote.
|
|
|
|
You may use the command:
|
|
|
|
```console
|
|
$ gpgconf --list-dirs agent-ssh-socket
|
|
```
|
|
|
|
Then in your `.ssh/config` add one sentence for that remote
|
|
|
|
```
|
|
Host
|
|
Hostname remote-host.tld
|
|
StreamLocalBindUnlink yes
|
|
RemoteForward /run/user/1000/gnupg/S.gpg-agent.ssh /run/user/1000/gnupg/S.gpg-agent.ssh
|
|
# RemoteForward [remote socket] [local socket]
|
|
# Note that ForwardAgent is not wanted here!
|
|
```
|
|
|
|
After successfully ssh into the remote, you should check that you have `/run/user/1000/gnupg/S.gpg-agent.ssh` lying there.
|
|
|
|
Then in the *remote* you can type in command line or configure in the shell rc file with:
|
|
|
|
```console
|
|
export SSH_AUTH_SOCK="/run/user/$UID/gnupg/S.gpg-agent.ssh"
|
|
```
|
|
|
|
After typing or sourcing your shell rc file, with `ssh-add -l` you should find your ssh public key now.
|
|
|
|
**Note** In this process no gpg-agent in the remote is involved, hence `gpg-agent.conf` in the remote is of no use. Also pinentry is invoked locally.
|
|
|
|
### Chained SSH Agent Forwarding
|
|
|
|
If you use `ssh-agent` provided by OpenSSH and want to forward it into a *third* box, you can just `ssh -A third` on the *remote*.
|
|
|
|
Meanwhile, if you use `S.gpg-agent.ssh`, assume you have gone through the steps above and have `S.gpg-agent.ssh` on the *remote*, and you would like to forward this agent into a *third* box, first you may need to configure `sshd_config` and `SSH_AUTH_SOCK` of *third* in the same way as *remote*, then in the ssh config of *remote*, add the following lines
|
|
|
|
```console
|
|
Host third
|
|
Hostname third-host.tld
|
|
StreamLocalBindUnlink yes
|
|
RemoteForward /run/user/1000/gnupg/S.gpg-agent.ssh /run/user/1000/gnupg/S.gpg-agent.ssh
|
|
# RemoteForward [remote socket] [local socket]
|
|
# Note that ForwardAgent is not wanted here!
|
|
```
|
|
|
|
You should change the path according to `gpgconf --list-dirs agent-ssh-socket` on *remote* and *third*.
|
|
|
|
## GitHub
|
|
|
|
You can use YubiKey to sign GitHub commits and tags. It can also be used for GitHub SSH authentication, allowing you to push, pull, and commit without a password.
|
|
|
|
Login to GitHub and upload SSH and PGP public keys in Settings.
|
|
|
|
To configure a signing key:
|
|
|
|
> git config --global user.signingkey $KEYID
|
|
|
|
Make sure the user.email option matches the email address associated with the PGP identity.
|
|
|
|
Now, to sign commits or tags simply use the `-S` option. GPG will automatically query YubiKey and prompt you for a PIN.
|
|
|
|
To authenticate:
|
|
|
|
**Windows**
|
|
|
|
Run the following commands:
|
|
|
|
> git config --global core.sshcommand 'plink -agent'
|
|
> git config --global gpg.program 'C:\Program Files (x86)\GnuPG\bin\gpg.exe'
|
|
|
|
You can then change the repository url to `git@github.com:USERNAME/repository` and any authenticated commands will be authorized by YubiKey.
|
|
|
|
**Note** If you encounter the error `gpg: signing failed: No secret key` - run `gpg --card-status` with YubiKey plugged in and try the git command again.
|
|
|
|
## OpenBSD
|
|
|
|
Install and enable tools for use with PC/SC drivers, cards, readers, then reboot to recognize YubiKey:
|
|
|
|
```console
|
|
$ doas pkg_add pcsc-tools
|
|
|
|
$ doas rcctl enable pcscd
|
|
|
|
$ doas reboot
|
|
```
|
|
|
|
## Windows
|
|
|
|
Windows can already have some virtual smartcard readers installed, like the one provided for Windows Hello. To ensure your YubiKey is the correct one used by scdaemon, you should add it to its configuration. You will need your device's full name. To find your device's full name, plug in your YubiKey and open PowerShell to run the following command:
|
|
|
|
``` powershell
|
|
PS C:\WINDOWS\system32> Get-PnpDevice -Class SoftwareDevice | Where-Object {$_.FriendlyName -like "*YubiKey*"} | Select-Object -ExpandProperty FriendlyName
|
|
Yubico YubiKey OTP+FIDO+CCID 0
|
|
```
|
|
|
|
The name slightly differs according to the model. Thanks to [Scott Hanselman](https://www.hanselman.com/blog/HowToSetupSignedGitCommitsWithAYubiKeyNEOAndGPGAndKeybaseOnWindows.aspx) for sharing this information.
|
|
|
|
* Create or edit `%APPDATA%/gnupg/scdaemon.conf` to add:
|
|
|
|
```
|
|
reader-port <your yubikey device's full name, e.g. Yubico YubiKey OTP+FIDO+CCID 0>
|
|
```
|
|
|
|
* Create or edit `%APPDATA%/gnupg/gpg-agent.conf` to add:
|
|
|
|
```
|
|
enable-ssh-support
|
|
enable-putty-support
|
|
```
|
|
|
|
* Open a command console, restart the agent:
|
|
|
|
```
|
|
> gpg-connect-agent killagent /bye
|
|
> gpg-connect-agent /bye
|
|
```
|
|
|
|
* Enter `> gpg --card-status` to see YubiKey details.
|
|
* Import the [public key](#export-public-key): `> gpg --import <path to public key file>`
|
|
* [Trust the master key](#trust-master-key)
|
|
* Retrieve the public key id: `> gpg --list-public-keys`
|
|
* Export the SSH key from GPG: `> gpg --export-ssh-key <public key id>`
|
|
|
|
Copy this key to a file for later use. It represents the public SSH key corresponding to the secret key on the YubiKey. You can upload this key to any server you wish to SSH into.
|
|
|
|
Create a shortcut that points to `gpg-connect-agent /bye` and place it in the startup folder `shell:startup` to make sure the agent starts after a system shutdown. Modify the shortcut properties so it starts in a "Minimized" window, to avoid unnecessary noise at startup.
|
|
|
|
Now you can use PuTTY for public key SSH authentication. When the server asks for public key verification, PuTTY will forward the request to GPG, which will prompt you for a PIN and authorize the login using YubiKey.
|
|
|
|
### WSL
|
|
|
|
The goal here is to make the SSH client inside WSL work together with the Windows agent you are using (gpg-agent.exe in our case). Here is what we are going to achieve:
|
|
![WSL agent architecture](media/schema_gpg.png)
|
|
|
|
**Note** this works only for SSH agent forwarding. Real GPG forwarding (encryption/decryption) is actually not supported. See the [weasel-pageant](https://github.com/vuori/weasel-pageant) readme for further information.
|
|
|
|
#### Use ssh-agent or use S.weasel-pegant
|
|
|
|
One way to forward is just `ssh -A` (still need to eval weasel to setup local ssh-agent), and only relies on OpenSSH. In this track, `ForwardAgent` and `AllowAgentForwarding` in ssh/sshd config may be involved; However, if you use the other way (gpg ssh socket forwarding), you should not enable `ForwardAgent` in ssh config. See [SSH Agent Forwarding](#remote-machines-ssh-agent-forwarding) for more info.
|
|
|
|
Another way is to forward the gpg ssh socket, as described below.
|
|
|
|
#### Prerequisites
|
|
|
|
* Ubuntu 16.04 or newer for WSL
|
|
* Kleopatra
|
|
* [Windows configuration](#windows)
|
|
|
|
#### WSL configuration
|
|
|
|
Download or clone [weasel-pageant](https://github.com/vuori/weasel-pageant).
|
|
|
|
Add `eval $(/mnt/c/<path of extraction>/weasel-pageant -r -a /tmp/S.weasel-pageant)` to shell rc file. Use a named socket here so it can be used in the `RemoteForward` directive of `~/.ssh/config`. Source it with `source ~/.bashrc`.
|
|
|
|
Display the SSH key with `$ ssh-add -l`
|
|
|
|
Edit `~/.ssh/config` to add the following for each host you want to use agent forwarding:
|
|
|
|
```
|
|
RemoteForward <remote SSH socket path> /tmp/S.weasel-pageant
|
|
```
|
|
|
|
**Note** The remote SSH socket path can be found with `gpgconf --list-dirs agent-ssh-socket`
|
|
|
|
#### Remote host configuration
|
|
|
|
You may have to add the following to the shell rc file.
|
|
|
|
```
|
|
export SSH_AUTH_SOCK=$(gpgconf --list-dirs agent-ssh-socket)
|
|
```
|
|
|
|
Add the following to `/etc/ssh/sshd_config`:
|
|
|
|
```
|
|
StreamLocalBindUnlink yes
|
|
```
|
|
|
|
And reload the SSH daemon (e.g., `sudo service sshd reload`).
|
|
|
|
Unplug YubiKey, disconnect or reboot. Log back into Windows, open a WSL console and enter `ssh-add -l` - you should see nothing.
|
|
|
|
Plug in YubiKey, enter the same command to display the ssh key.
|
|
|
|
Log into the remote host, you should have the pinentry dialog asking for the YubiKey pin.
|
|
|
|
On the remote host, type `ssh-add -l` - if you see the ssh key, that means forwarding works!
|
|
|
|
**Note** Agent forwarding may be chained through multiple hosts - just follow the same [protocol](#remote-host-configuration) to configure each host. You may also read this part on [chained ssh agent forwarding](#chained-ssh-agent-forwarding).
|
|
|
|
## macOS
|
|
|
|
To use gui applications on macOS, [a little bit more setup is needed](https://jms1.net/yubikey/make-ssh-use-gpg-agent.md).
|
|
|
|
Create `$HOME/Library/LaunchAgents/gnupg.gpg-agent.plist` with the following contents:
|
|
|
|
```
|
|
<?xml version="1.0" encoding="UTF-8"?>
|
|
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
|
|
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
|
|
<plist version="1.0">
|
|
<dict>
|
|
<key>Label</key>
|
|
<string>gnupg.gpg-agent</string>
|
|
<key>RunAtLoad</key>
|
|
<true/>
|
|
<key>KeepAlive</key>
|
|
<false/>
|
|
<key>ProgramArguments</key>
|
|
<array>
|
|
<string>/usr/local/MacGPG2/bin/gpg-connect-agent</string>
|
|
<string>/bye</string>
|
|
</array>
|
|
</dict>
|
|
</plist>
|
|
```
|
|
|
|
```console
|
|
launchctl load gnupg.gpg-agent.plist
|
|
```
|
|
|
|
Create `$HOME/Library/LaunchAgents/gnupg.gpg-agent-symlink.plist` with the following contens:
|
|
|
|
```
|
|
<?xml version="1.0" encoding="UTF-8"?>
|
|
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/ProperyList-1.0/dtd">
|
|
<plist version="1.0">
|
|
<dict>
|
|
<key>Label</key>
|
|
<string>gnupg.gpg-agent-symlink</string>
|
|
<key>ProgramArguments</key>
|
|
<array>
|
|
<string>/bin/sh</string>
|
|
<string>-c</string>
|
|
<string>/bin/ln -sf $HOME/.gnupg/S.gpg-agent.ssh $SSH_AUTH_SOCK</string>
|
|
</array>
|
|
<key>RunAtLoad</key>
|
|
<true/>
|
|
</dict>
|
|
</plist>
|
|
```
|
|
|
|
```console
|
|
launchctl load gnupg.gpg-agent-symlink.plist
|
|
```
|
|
|
|
You will need to either reboot, or log out and log back in, in order to activate these changes.
|
|
|
|
# Remote Machines (GPG Agent Forwarding)
|
|
|
|
This section is different from ssh-agent forwarding in [SSH](#ssh) as gpg-agent forwarding has a broader usage, not only limited to ssh.
|
|
|
|
To use YubiKey to sign a git commit on a remote host, or signing email/decrypt files on a remote host, configure and use GPG Agent Forwarding. To ssh through another network, especially to push to/pull from GitHub using ssh, see [Remote Machines (SSH Agent forwarding)](#remote-machines-ssh-agent-forwarding) for more info.
|
|
|
|
To do this, you need access to the remote machine and the YubiKey has to be set up on the host machine.
|
|
|
|
After gpg-agent forwarding, it is nearly the same as if YubiKey was inserted in the remote. Hence configurations except `gpg-agent.conf` for the remote can be the same as those for the local.
|
|
|
|
**Important** `gpg-agent.conf` for the remote is of no use, hence `$GPG_TTY` is of no use too for the remote. The mechanism is that after forwarding, remote `gpg` directly communicates with `S.gpg-agent` without *starting* `gpg-agent` on the remote.
|
|
|
|
On the remote machine, edit `/etc/ssh/sshd_config` to set `StreamLocalBindUnlink yes`
|
|
|
|
**Optional** If you do not have root access to the remote machine to edit `/etc/ssh/sshd_config`, you will need to remove the socket (located at `gpgconf --list-dir agent-socket`) on the remote machine before forwarding works. For example, `rm /run/user/1000/gnupg/S.gpg-agent`. Further information can be found on the [AgentForwarding GNUPG wiki page](https://wiki.gnupg.org/AgentForwarding).
|
|
|
|
Import public keys to the remote machine. This can be done by fetching from a keyserver. On the local machine, copy the public keyring to the remote machine:
|
|
|
|
```console
|
|
$ scp ~/.gnupg/pubring.kbx remote:~/.gnupg/
|
|
```
|
|
|
|
On modern distributions, such as Fedora 30, there is typically no need to also set `RemoteForward` in `~/.ssh/config` as detailed in the next chapter, because the right thing happens automatically.
|
|
|
|
If any error happens (or there is no `gpg-agent.socket` in the remote) for modern distributions, you may go through the configuration steps in the next section.
|
|
|
|
## Steps for older distributions
|
|
|
|
On the local machine, run:
|
|
|
|
```console
|
|
$ gpgconf --list-dirs agent-extra-socket
|
|
```
|
|
|
|
This should return a path to agent-extra-socket - `/run/user/1000/gnupg/S.gpg-agent.extra` - though on older Linux distros (and macOS) it may be `/home/<user>/.gnupg/S/gpg-agent.extra`
|
|
|
|
Find the agent socket on the **remote** machine:
|
|
|
|
```console
|
|
$ gpgconf --list-dirs agent-socket
|
|
```
|
|
|
|
This should return a path such as `/run/user/1000/gnupg/S.gpg-agent`
|
|
|
|
Finally, enable agent forwarding for a given machine by adding the following to the local machine's ssh config file `~/.ssh/config` (your agent sockets may be different):
|
|
|
|
```
|
|
Host
|
|
Hostname remote-host.tld
|
|
StreamLocalBindUnlink yes
|
|
RemoteForward /run/user/1000/gnupg/S.gpg-agent /run/user/1000/gnupg/S.gpg-agent.extra
|
|
# RemoteForward [remote socket] [local socket]
|
|
```
|
|
|
|
If you're still having problems, it may be necessary to edit `gpg-agent.conf` file on the *local* machines to add the following information:
|
|
|
|
```
|
|
pinentry-program /usr/bin/pinentry-gtk-2
|
|
extra-socket /run/user/1000/gnupg/S.gpg-agent.extra
|
|
```
|
|
|
|
**Note** The pinentry program starts on *local* machine, not remote. Hence when there are needs to enter the pin you need to find the prompt on the local machine.
|
|
|
|
**Important** Any pinentry program except `pinentry-tty` or `pinentry-curses` may be used. This is because local `gpg-agent` may start headlessly (By systemd without `$GPG_TTY` set locally telling which tty it is on), thus failed to obtain the pin. Errors on the remote may be misleading saying that there is *IO Error*. (Yes, internally there is actually an *IO Error* since it happens when writing to/reading from tty while finding no tty to use, but for end users this is not friendly.)
|
|
|
|
See [Issue #85](https://github.com/drduh/YubiKey-Guide/issues/85) for more information and troubleshooting.
|
|
|
|
## Chained GPG Agent Forwarding
|
|
|
|
Assume you have gone through the steps above and have `S.gpg-agent` on the *remote*, and you would like to forward this agent into a *third* box, first you may need to configure `sshd_config` of *third* in the same way as *remote*, then in the ssh config of *remote*, add the following lines:
|
|
|
|
```console
|
|
Host third
|
|
Hostname third-host.tld
|
|
StreamLocalBindUnlink yes
|
|
RemoteForward /run/user/1000/gnupg/S.gpg-agent /run/user/1000/gnupg/S.gpg-agent
|
|
# RemoteForward [remote socket] [local socket]
|
|
```
|
|
|
|
You should change the path according to `gpgconf --list-dirs agent-socket` on *remote* and *third*.
|
|
|
|
**Note** On *local* you have `S.gpg-agent.extra` whereas on *remote* and *third*, you only have `S.gpg-agent`.
|
|
|
|
# Using Multiple Keys
|
|
|
|
To use a single identity with multiple YubiKeys - or to replace a lost card with another - issue this command to switch keys:
|
|
|
|
```console
|
|
$ gpg-connect-agent "scd serialno" "learn --force" /bye
|
|
```
|
|
|
|
Alternatively, use a script to delete the GnuPG shadowed key, where the card serial number is stored (see [GnuPG #T2291](https://dev.gnupg.org/T2291)):
|
|
|
|
```console
|
|
$ cat >> ~/scripts/remove-keygrips.sh <<EOF
|
|
#!/usr/bin/env bash
|
|
test ! "$@" && echo "Specify a key." && exit 1
|
|
KEYGRIPS="$(gpg --with-keygrip --list-secret-keys $@ | grep Keygrip | awk '{print $3}')"
|
|
for keygrip in $KEYGRIPS
|
|
do
|
|
rm "$HOME/.gnupg/private-keys-v1.d/$keygrip.key" 2> /dev/null
|
|
done
|
|
|
|
gpg --card-status
|
|
EOF
|
|
|
|
$ chmod +x ~/scripts/remove-keygrips.sh
|
|
|
|
$ ~/scripts/remove-keygrips.sh $KEYID
|
|
```
|
|
|
|
See discussion in Issues [#19](https://github.com/drduh/YubiKey-Guide/issues/19) and [#112](https://github.com/drduh/YubiKey-Guide/issues/112) for more information and troubleshooting steps.
|
|
|
|
# Require touch
|
|
|
|
**Note** This is not possible on YubiKey NEO.
|
|
|
|
By default, YubiKey will perform encryption, signing and authentication operations without requiring any action from the user, after the key is plugged in and first unlocked with the PIN.
|
|
|
|
To require a touch for each key operation, install [YubiKey Manager](https://developers.yubico.com/yubikey-manager/) and recall the Admin PIN:
|
|
|
|
**Note** Older versions of YubiKey Manager use `touch` instead of `set-touch` in the following commands.
|
|
|
|
Authentication:
|
|
|
|
```console
|
|
$ ykman openpgp keys set-touch aut on
|
|
```
|
|
|
|
Signing:
|
|
|
|
```console
|
|
$ ykman openpgp keys set-touch sig on
|
|
```
|
|
|
|
Encryption:
|
|
|
|
```console
|
|
$ ykman openpgp keys set-touch enc on
|
|
```
|
|
|
|
Depending on how the YubiKey is going to be used, you may want to look at the policy options for each of these and adjust the above commands accordingly. They can be viewed with the following command:
|
|
|
|
```
|
|
$ ykman openpgp keys set-touch -h
|
|
Usage: ykman openpgp keys set-touch [OPTIONS] KEY POLICY
|
|
|
|
Set touch policy for OpenPGP keys.
|
|
|
|
KEY Key slot to set (sig, enc, aut or att).
|
|
POLICY Touch policy to set (on, off, fixed, cached or cached-fixed).
|
|
|
|
The touch policy is used to require user interaction for all operations using the private key on the YubiKey. The touch policy is set individually for each key slot. To see the current touch policy, run
|
|
|
|
$ ykman openpgp info
|
|
|
|
Touch policies:
|
|
|
|
Off (default) No touch required
|
|
On Touch required
|
|
Fixed Touch required, can't be disabled without a full reset
|
|
Cached Touch required, cached for 15s after use
|
|
Cached-Fixed Touch required, cached for 15s after use, can't be disabled
|
|
without a full reset
|
|
|
|
Options:
|
|
-a, --admin-pin TEXT Admin PIN for OpenPGP.
|
|
-f, --force Confirm the action without prompting.
|
|
-h, --help Show this message and exit.
|
|
```
|
|
|
|
If the YubiKey is going to be used within an email client that opens and verifies encrypted mail, `Cached` or `Cached-Fixed` may be desirable.
|
|
|
|
YubiKey will blink when it is waiting for a touch. On Linux you can also use [yubikey-touch-detector](https://github.com/maximbaz/yubikey-touch-detector) to have an indicator or notification that YubiKey is waiting for a touch.
|
|
|
|
# Email
|
|
|
|
GPG keys on YubiKey can be used with ease to encrypt and/or sign emails and attachments using [Thunderbird](https://www.thunderbird.net/), [Enigmail](https://www.enigmail.net) and [Mutt](http://www.mutt.org/). Thunderbird supports OAuth 2 authentication and can be used with Gmail. See [this guide](https://ssd.eff.org/en/module/how-use-pgp-linux) from EFF for detailed instructions. Mutt has OAuth 2 support since version 2.0.
|
|
|
|
## Mailvelope on macOS
|
|
|
|
[Mailvelope](https://www.mailvelope.com/en) allows GPG keys on YubiKey to be used with Gmail and others.
|
|
|
|
**Important** Mailvelope [does not work](https://github.com/drduh/YubiKey-Guide/issues/178) with the `throw-keyids` option set in `gpg.conf`.
|
|
|
|
On macOS, install gpgme using Homebrew:
|
|
|
|
```console
|
|
$ brew install gpgme
|
|
```
|
|
|
|
To allow Chrome to run gpgme, edit `~/Library/Application\ Support/Google/Chrome/NativeMessagingHosts/gpgmejson.json` and add:
|
|
|
|
```json
|
|
{
|
|
"name": "gpgmejson",
|
|
"description": "Integration with GnuPG",
|
|
"path": "/usr/local/bin/gpgme-json",
|
|
"type": "stdio",
|
|
"allowed_origins": [
|
|
"chrome-extension://kajibbejlbohfaggdiogboambcijhkke/"
|
|
]
|
|
}
|
|
```
|
|
|
|
Edit the default path to allow Chrome to find GPG:
|
|
|
|
```console
|
|
$ sudo launchctl config user path /usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin
|
|
```
|
|
|
|
Finally, install the [Mailvelope extension](https://chrome.google.com/webstore/detail/mailvelope/kajibbejlbohfaggdiogboambcijhkke) from the Chrome app store.
|
|
|
|
## Mutt
|
|
|
|
Mutt has both CLI and TUI interfaces, and the latter provides powerful functions for daily email processing. In addition, PGP can be integrated such that signing/encryption/verifying/decryption can be done without leaving TUI.
|
|
|
|
To enable GnuPG support, one can just use the config file `gpg.rc` provided by mutt, usually located at `/usr/share/doc/mutt/samples/gpg.rc` after installation. One only needs to edit the file on options like `pgp_default_key`, `pgp_sign_as` and `pgp_autosign`. After editting one can `source` this rcfile in their main `muttrc` to use it.
|
|
|
|
**Important** If one uses `pinentry-tty` as one's pinentry program in `gpg-agent.conf`, it would mess with one's Mutt TUI, as reported. This is because Mutt TUI uses curses while tty output may harm the format. It is recommended to use `pinentry-curses` or other graphic pinentry program.
|
|
|
|
# Reset
|
|
|
|
If PIN attempts are exceeded, the card is locked and must be [reset](https://developers.yubico.com/ykneo-openpgp/ResetApplet.html) and set up again using the encrypted backup.
|
|
|
|
Copy the following script to a file and run `gpg-connect-agent --run $file` to lock and terminate the card. Then re-insert YubiKey to reset.
|
|
|
|
```console
|
|
/hex
|
|
scd serialno
|
|
scd apdu 00 20 00 81 08 40 40 40 40 40 40 40 40
|
|
scd apdu 00 20 00 81 08 40 40 40 40 40 40 40 40
|
|
scd apdu 00 20 00 81 08 40 40 40 40 40 40 40 40
|
|
scd apdu 00 20 00 81 08 40 40 40 40 40 40 40 40
|
|
scd apdu 00 20 00 83 08 40 40 40 40 40 40 40 40
|
|
scd apdu 00 20 00 83 08 40 40 40 40 40 40 40 40
|
|
scd apdu 00 20 00 83 08 40 40 40 40 40 40 40 40
|
|
scd apdu 00 20 00 83 08 40 40 40 40 40 40 40 40
|
|
scd apdu 00 e6 00 00
|
|
scd apdu 00 44 00 00
|
|
/echo Card has been successfully reset.
|
|
```
|
|
|
|
Or use `ykman` (sometimes in `~/.local/bin/`):
|
|
|
|
```console
|
|
$ ykman openpgp reset
|
|
WARNING! This will delete all stored OpenPGP keys and data and restore factory settings? [y/N]: y
|
|
Resetting OpenPGP data, don't remove your YubiKey...
|
|
Success! All data has been cleared and default PINs are set.
|
|
PIN: 123456
|
|
Reset code: NOT SET
|
|
Admin PIN: 12345678
|
|
```
|
|
|
|
# Notes
|
|
|
|
1. YubiKey has two configurations: one invoked with a short press, and the other with a long press. By default, the short-press mode is configured for HID OTP - a brief touch will emit an OTP string starting with `cccccccc`. If you rarely use the OTP mode, you can swap it to the second configuration via the YubiKey Personalization tool. If you *never* use OTP, you can disable it entirely using the [YubiKey Manager](https://developers.yubico.com/yubikey-manager) application (note, this not the similarly named older YubiKey NEO Manager).
|
|
1. Programming YubiKey for GPG keys still lets you use its other configurations - [U2F](https://en.wikipedia.org/wiki/Universal_2nd_Factor), [OTP](https://www.yubico.com/faq/what-is-a-one-time-password-otp/) and [static password](https://www.yubico.com/products/services-software/personalization-tools/static-password/) modes, for example.
|
|
1. Setting an expiry essentially forces you to manage your subkeys and announces to the rest of the world that you are doing so. Setting an expiry on a primary key is ineffective for protecting the key from loss - whoever has the primary key can simply extend its expiry period. Revocation certificates are [better suited](https://security.stackexchange.com/questions/14718/does-openpgp-key-expiration-add-to-security/79386#79386) for this purpose. It may be appropriate for your use case to set expiry dates on subkeys.
|
|
1. To switch between two or more identities on different keys - unplug the first key and restart gpg-agent, ssh-agent and pinentry with `pkill gpg-agent ; pkill ssh-agent ; pkill pinentry ; eval $(gpg-agent --daemon --enable-ssh-support)`, then plug in the other key and run `gpg-connect-agent updatestartuptty /bye` - then it should be ready for use.
|
|
1. To use yubikeys on more than one computer with gpg: After the initial setup, import the public keys on the second workstation. Confirm gpg can see the card via `gpg --card-status`, Trust the public keys you imported ultimately (as above). At this point `gpg --list-secret-keys` should show your (trusted) key.
|
|
|
|
# Troubleshooting
|
|
|
|
- Use `man gpg` to understand GPG options and command-line flags.
|
|
|
|
- To get more information on potential errors, restart the `gpg-agent` process with debug output to the console with `pkill gpg-agent; gpg-agent --daemon --no-detach -v -v --debug-level advanced --homedir ~/.gnupg`.
|
|
|
|
- If you encounter problems connecting to YubiKey with GPG - try unplugging and re-inserting YubiKey, and restarting the `gpg-agent` process.
|
|
|
|
- If you receive the error, `gpg: decryption failed: secret key not available` - you likely need to install GnuPG version 2.x. Another possibility is that there is a problem with the PIN, e.g. it is too short or blocked.
|
|
|
|
- If you receive the error, `Yubikey core error: no yubikey present` - make sure the YubiKey is inserted correctly. It should blink once when plugged in.
|
|
|
|
- If you still receive the error, `Yubikey core error: no yubikey present` - you likely need to install newer versions of yubikey-personalize as outlined in [Required software](#required-software).
|
|
|
|
- If you receive the error, `Yubikey core error: write error` - YubiKey is likely locked. Install and run yubikey-personalization-gui to unlock it.
|
|
|
|
- If you receive the error, `Key does not match the card's capability` - you likely need to use 2048 bit RSA key sizes.
|
|
|
|
- If you receive the error, `sign_and_send_pubkey: signing failed: agent refused operation` - make sure you replaced `ssh-agent` with `gpg-agent` as noted above.
|
|
|
|
- If you still receive the error, `sign_and_send_pubkey: signing failed: agent refused operation` - [run the command](https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=835394) `gpg-connect-agent updatestartuptty /bye`
|
|
|
|
- If you still receive the error, `sign_and_send_pubkey: signing failed: agent refused operation` - edit `~/.gnupg/gpg-agent.conf` to set a valid `pinentry` program path, e.g. `pinentry-program /usr/local/bin/pinentry-mac` on macOS.
|
|
|
|
- If you receive the error, `The agent has no identities` from `ssh-add -L`, make sure you have installed and started `scdaemon`.
|
|
|
|
- If you receive the error, `Error connecting to agent: No such file or directory` from `ssh-add -L`, the UNIX file socket that the agent uses for communication with other processes may not be set up correctly. On Debian, try `export SSH_AUTH_SOCK="/run/user/$UID/gnupg/S.gpg-agent.ssh"`. Also see that `gpgconf --list-dirs agent-ssh-socket` is returning single path, to existing `S.gpg-agent.ssh` socket.
|
|
|
|
- If you receive the error, `Permission denied (publickey)`, increase ssh verbosity with the `-v` flag and ensure the public key from the card is being offered: `Offering public key: RSA SHA256:abcdefg... cardno:00060123456`. If it is, ensure you are connecting as the right user on the target system, rather than as the user on the local system. Otherwise, be sure `IdentitiesOnly` is not [enabled](https://github.com/FiloSottile/whosthere#how-do-i-stop-it) for this host.
|
|
|
|
- If SSH authentication still fails - add up to 3 `-v` flags to the `ssh` client to increase verbosity.
|
|
|
|
- If it still fails, it may be useful to stop the background `sshd` daemon process service on the server (e.g. using `sudo systemctl stop sshd`) and instead start it in the foreground with extensive debugging output, using `/usr/sbin/sshd -eddd`. Note that the server will not fork and will only process one connection, therefore has to be re-started after every `ssh` test.
|
|
|
|
- If you receive the error, `Please insert the card with serial number: *` see [using of multiple keys](#using-multiple-keys).
|
|
|
|
- If you receive the error, `There is no assurance this key belongs to the named user` or `encryption failed: Unusable public key` use `gpg --edit-key` to set `trust` to `5 = I trust ultimately`.
|
|
- If, when you try the above `--edit-key` command, you get the error
|
|
`Need the secret key to do this.`, you can manually specify trust for the key in
|
|
`~/.gnupg/gpg.conf` by using the `trust-key [your key ID]` directive.
|
|
|
|
- If, when using a previously provisioned YubiKey on a new computer with `pass`, you see the
|
|
following error on `pass insert`:
|
|
```
|
|
gpg: 0x0000000000000000: There is no assurance this key belongs to the named user
|
|
gpg: [stdin]: encryption failed: Unusable public key
|
|
```
|
|
you need to adjust the trust associated with the key. See the above bullet.
|
|
|
|
- If you receive the error, `gpg: 0x0000000000000000: skipped: Unusable public key` or `encryption failed: Unusable public key` the sub-key may be expired and can no longer be used to encrypt nor sign messages. It can still be used to decrypt and authenticate, however.
|
|
|
|
- Refer to Yubico article [Troubleshooting Issues with GPG](https://support.yubico.com/hc/en-us/articles/360013714479-Troubleshooting-Issues-with-GPG) for additional guidance.
|
|
|
|
# Alternatives
|
|
|
|
*TODO: Information about other ways to authenticate SSH (e.g., without GPG) and other YubiKey features*
|
|
|
|
# Links
|
|
|
|
* https://alexcabal.com/creating-the-perfect-gpg-keypair/
|
|
* https://blog.habets.se/2013/02/GPG-and-SSH-with-Yubikey-NEO
|
|
* https://blog.josefsson.org/2014/06/23/offline-gnupg-master-key-and-subkeys-on-yubikey-neo-smartcard/
|
|
* https://blog.onefellow.com/post/180065697833/yubikey-forwarding-ssh-keys
|
|
* https://developers.yubico.com/PGP/
|
|
* https://developers.yubico.com/PGP/Card_edit.html
|
|
* https://developers.yubico.com/yubikey-personalization/
|
|
* https://evilmartians.com/chronicles/stick-with-security-yubikey-ssh-gnupg-macos
|
|
* https://gist.github.com/ageis/14adc308087859e199912b4c79c4aaa4
|
|
* https://github.com/herlo/ssh-gpg-smartcard-config
|
|
* https://github.com/tomlowenthal/documentation/blob/master/gpg/smartcard-keygen.md
|
|
* https://help.riseup.net/en/security/message-security/openpgp/best-practices
|
|
* https://jclement.ca/articles/2015/gpg-smartcard/
|
|
* https://rnorth.org/gpg-and-ssh-with-yubikey-for-mac
|
|
* https://trmm.net/Yubikey
|
|
* https://www.bootc.net/archives/2013/06/09/my-perfect-gnupg-ssh-agent-setup/
|
|
* https://www.esev.com/blog/post/2015-01-pgp-ssh-key-on-yubikey-neo/
|
|
* https://www.hanselman.com/blog/HowToSetupSignedGitCommitsWithAYubiKeyNEOAndGPGAndKeybaseOnWindows.aspx
|
|
* https://www.void.gr/kargig/blog/2013/12/02/creating-a-new-gpg-key-with-subkeys/
|
|
* https://mlohr.com/gpg-agent-forwarding/
|
|
* https://www.ingby.com/?p=293
|
|
* https://support.yubico.com/support/solutions/articles/15000027139-yubikey-5-2-3-enhancements-to-openpgp-3-4-support
|