Removed unused image decoders from vendoring

This commit is contained in:
Seednode 2022-10-29 10:46:08 -05:00
parent 7fbac504bc
commit 7e5f8b4c14
16 changed files with 3725 additions and 1872 deletions

View File

@ -1,795 +0,0 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run gen.go
// Package ccitt implements a CCITT (fax) image decoder.
package ccitt
import (
"encoding/binary"
"errors"
"image"
"io"
"math/bits"
)
var (
errIncompleteCode = errors.New("ccitt: incomplete code")
errInvalidBounds = errors.New("ccitt: invalid bounds")
errInvalidCode = errors.New("ccitt: invalid code")
errInvalidMode = errors.New("ccitt: invalid mode")
errInvalidOffset = errors.New("ccitt: invalid offset")
errMissingEOL = errors.New("ccitt: missing End-of-Line")
errRunLengthOverflowsWidth = errors.New("ccitt: run length overflows width")
errRunLengthTooLong = errors.New("ccitt: run length too long")
errUnsupportedMode = errors.New("ccitt: unsupported mode")
errUnsupportedSubFormat = errors.New("ccitt: unsupported sub-format")
errUnsupportedWidth = errors.New("ccitt: unsupported width")
)
// Order specifies the bit ordering in a CCITT data stream.
type Order uint32
const (
// LSB means Least Significant Bits first.
LSB Order = iota
// MSB means Most Significant Bits first.
MSB
)
// SubFormat represents that the CCITT format consists of a number of
// sub-formats. Decoding or encoding a CCITT data stream requires knowing the
// sub-format context. It is not represented in the data stream per se.
type SubFormat uint32
const (
Group3 SubFormat = iota
Group4
)
// AutoDetectHeight is passed as the height argument to NewReader to indicate
// that the image height (the number of rows) is not known in advance.
const AutoDetectHeight = -1
// Options are optional parameters.
type Options struct {
// Align means that some variable-bit-width codes are byte-aligned.
Align bool
// Invert means that black is the 1 bit or 0xFF byte, and white is 0.
Invert bool
}
// maxWidth is the maximum (inclusive) supported width. This is a limitation of
// this implementation, to guard against integer overflow, and not anything
// inherent to the CCITT format.
const maxWidth = 1 << 20
func invertBytes(b []byte) {
for i, c := range b {
b[i] = ^c
}
}
func reverseBitsWithinBytes(b []byte) {
for i, c := range b {
b[i] = bits.Reverse8(c)
}
}
// highBits writes to dst (1 bit per pixel, most significant bit first) the
// high (0x80) bits from src (1 byte per pixel). It returns the number of bytes
// written and read such that dst[:d] is the packed form of src[:s].
//
// For example, if src starts with the 8 bytes [0x7D, 0x7E, 0x7F, 0x80, 0x81,
// 0x82, 0x00, 0xFF] then 0x1D will be written to dst[0].
//
// If src has (8 * len(dst)) or more bytes then only len(dst) bytes are
// written, (8 * len(dst)) bytes are read, and invert is ignored.
//
// Otherwise, if len(src) is not a multiple of 8 then the final byte written to
// dst is padded with 1 bits (if invert is true) or 0 bits. If inverted, the 1s
// are typically temporary, e.g. they will be flipped back to 0s by an
// invertBytes call in the highBits caller, reader.Read.
func highBits(dst []byte, src []byte, invert bool) (d int, s int) {
// Pack as many complete groups of 8 src bytes as we can.
n := len(src) / 8
if n > len(dst) {
n = len(dst)
}
dstN := dst[:n]
for i := range dstN {
src8 := src[i*8 : i*8+8]
dstN[i] = ((src8[0] & 0x80) >> 0) |
((src8[1] & 0x80) >> 1) |
((src8[2] & 0x80) >> 2) |
((src8[3] & 0x80) >> 3) |
((src8[4] & 0x80) >> 4) |
((src8[5] & 0x80) >> 5) |
((src8[6] & 0x80) >> 6) |
((src8[7] & 0x80) >> 7)
}
d, s = n, 8*n
dst, src = dst[d:], src[s:]
// Pack up to 7 remaining src bytes, if there's room in dst.
if (len(dst) > 0) && (len(src) > 0) {
dstByte := byte(0)
if invert {
dstByte = 0xFF >> uint(len(src))
}
for n, srcByte := range src {
dstByte |= (srcByte & 0x80) >> uint(n)
}
dst[0] = dstByte
d, s = d+1, s+len(src)
}
return d, s
}
type bitReader struct {
r io.Reader
// readErr is the error returned from the most recent r.Read call. As the
// io.Reader documentation says, when r.Read returns (n, err), "always
// process the n > 0 bytes returned before considering the error err".
readErr error
// order is whether to process r's bytes LSB first or MSB first.
order Order
// The high nBits bits of the bits field hold upcoming bits in MSB order.
bits uint64
nBits uint32
// bytes[br:bw] holds bytes read from r but not yet loaded into bits.
br uint32
bw uint32
bytes [1024]uint8
}
func (b *bitReader) alignToByteBoundary() {
n := b.nBits & 7
b.bits <<= n
b.nBits -= n
}
// nextBitMaxNBits is the maximum possible value of bitReader.nBits after a
// bitReader.nextBit call, provided that bitReader.nBits was not more than this
// value before that call.
//
// Note that the decode function can unread bits, which can temporarily set the
// bitReader.nBits value above nextBitMaxNBits.
const nextBitMaxNBits = 31
func (b *bitReader) nextBit() (uint64, error) {
for {
if b.nBits > 0 {
bit := b.bits >> 63
b.bits <<= 1
b.nBits--
return bit, nil
}
if available := b.bw - b.br; available >= 4 {
// Read 32 bits, even though b.bits is a uint64, since the decode
// function may need to unread up to maxCodeLength bits, putting
// them back in the remaining (64 - 32) bits. TestMaxCodeLength
// checks that the generated maxCodeLength constant fits.
//
// If changing the Uint32 call, also change nextBitMaxNBits.
b.bits = uint64(binary.BigEndian.Uint32(b.bytes[b.br:])) << 32
b.br += 4
b.nBits = 32
continue
} else if available > 0 {
b.bits = uint64(b.bytes[b.br]) << (7 * 8)
b.br++
b.nBits = 8
continue
}
if b.readErr != nil {
return 0, b.readErr
}
n, err := b.r.Read(b.bytes[:])
b.br = 0
b.bw = uint32(n)
b.readErr = err
if b.order != MSB {
reverseBitsWithinBytes(b.bytes[:b.bw])
}
}
}
func decode(b *bitReader, decodeTable [][2]int16) (uint32, error) {
nBitsRead, bitsRead, state := uint32(0), uint64(0), int32(1)
for {
bit, err := b.nextBit()
if err != nil {
if err == io.EOF {
err = errIncompleteCode
}
return 0, err
}
bitsRead |= bit << (63 - nBitsRead)
nBitsRead++
// The "&1" is redundant, but can eliminate a bounds check.
state = int32(decodeTable[state][bit&1])
if state < 0 {
return uint32(^state), nil
} else if state == 0 {
// Unread the bits we've read, then return errInvalidCode.
b.bits = (b.bits >> nBitsRead) | bitsRead
b.nBits += nBitsRead
return 0, errInvalidCode
}
}
}
// decodeEOL decodes the 12-bit EOL code 0000_0000_0001.
func decodeEOL(b *bitReader) error {
nBitsRead, bitsRead := uint32(0), uint64(0)
for {
bit, err := b.nextBit()
if err != nil {
if err == io.EOF {
err = errMissingEOL
}
return err
}
bitsRead |= bit << (63 - nBitsRead)
nBitsRead++
if nBitsRead < 12 {
if bit&1 == 0 {
continue
}
} else if bit&1 != 0 {
return nil
}
// Unread the bits we've read, then return errMissingEOL.
b.bits = (b.bits >> nBitsRead) | bitsRead
b.nBits += nBitsRead
return errMissingEOL
}
}
type reader struct {
br bitReader
subFormat SubFormat
// width is the image width in pixels.
width int
// rowsRemaining starts at the image height in pixels, when the reader is
// driven through the io.Reader interface, and decrements to zero as rows
// are decoded. Alternatively, it may be negative if the image height is
// not known in advance at the time of the NewReader call.
//
// When driven through DecodeIntoGray, this field is unused.
rowsRemaining int
// curr and prev hold the current and previous rows. Each element is either
// 0x00 (black) or 0xFF (white).
//
// prev may be nil, when processing the first row.
curr []byte
prev []byte
// ri is the read index. curr[:ri] are those bytes of curr that have been
// passed along via the Read method.
//
// When the reader is driven through DecodeIntoGray, instead of through the
// io.Reader interface, this field is unused.
ri int
// wi is the write index. curr[:wi] are those bytes of curr that have
// already been decoded via the decodeRow method.
//
// What this implementation calls wi is roughly equivalent to what the spec
// calls the a0 index.
wi int
// These fields are copied from the *Options (which may be nil).
align bool
invert bool
// atStartOfRow is whether we have just started the row. Some parts of the
// spec say to treat this situation as if "wi = -1".
atStartOfRow bool
// penColorIsWhite is whether the next run is black or white.
penColorIsWhite bool
// seenStartOfImage is whether we've called the startDecode method.
seenStartOfImage bool
// truncated is whether the input is missing the final 6 consecutive EOL's
// (for Group3) or 2 consecutive EOL's (for Group4). Omitting that trailer
// (but otherwise padding to a byte boundary, with either all 0 bits or all
// 1 bits) is invalid according to the spec, but happens in practice when
// exporting from Adobe Acrobat to TIFF + CCITT. This package silently
// ignores the format error for CCITT input that has been truncated in that
// fashion, returning the full decoded image.
//
// Detecting trailer truncation (just after the final row of pixels)
// requires knowing which row is the final row, and therefore does not
// trigger if the image height is not known in advance.
truncated bool
// readErr is a sticky error for the Read method.
readErr error
}
func (z *reader) Read(p []byte) (int, error) {
if z.readErr != nil {
return 0, z.readErr
}
originalP := p
for len(p) > 0 {
// Allocate buffers (and decode any start-of-image codes), if
// processing the first or second row.
if z.curr == nil {
if !z.seenStartOfImage {
if z.readErr = z.startDecode(); z.readErr != nil {
break
}
z.atStartOfRow = true
}
z.curr = make([]byte, z.width)
}
// Decode the next row, if necessary.
if z.atStartOfRow {
if z.rowsRemaining < 0 {
// We do not know the image height in advance. See if the next
// code is an EOL. If it is, it is consumed. If it isn't, the
// bitReader shouldn't advance along the bit stream, and we
// simply decode another row of pixel data.
//
// For the Group4 subFormat, we may need to align to a byte
// boundary. For the Group3 subFormat, the previous z.decodeRow
// call (or z.startDecode call) has already consumed one of the
// 6 consecutive EOL's. The next EOL is actually the second of
// 6, in the middle, and we shouldn't align at that point.
if z.align && (z.subFormat == Group4) {
z.br.alignToByteBoundary()
}
if err := z.decodeEOL(); err == errMissingEOL {
// No-op. It's another row of pixel data.
} else if err != nil {
z.readErr = err
break
} else {
if z.readErr = z.finishDecode(true); z.readErr != nil {
break
}
z.readErr = io.EOF
break
}
} else if z.rowsRemaining == 0 {
// We do know the image height in advance, and we have already
// decoded exactly that many rows.
if z.readErr = z.finishDecode(false); z.readErr != nil {
break
}
z.readErr = io.EOF
break
} else {
z.rowsRemaining--
}
if z.readErr = z.decodeRow(z.rowsRemaining == 0); z.readErr != nil {
break
}
}
// Pack from z.curr (1 byte per pixel) to p (1 bit per pixel).
packD, packS := highBits(p, z.curr[z.ri:], z.invert)
p = p[packD:]
z.ri += packS
// Prepare to decode the next row, if necessary.
if z.ri == len(z.curr) {
z.ri, z.curr, z.prev = 0, z.prev, z.curr
z.atStartOfRow = true
}
}
n := len(originalP) - len(p)
if z.invert {
invertBytes(originalP[:n])
}
return n, z.readErr
}
func (z *reader) penColor() byte {
if z.penColorIsWhite {
return 0xFF
}
return 0x00
}
func (z *reader) startDecode() error {
switch z.subFormat {
case Group3:
if err := z.decodeEOL(); err != nil {
return err
}
case Group4:
// No-op.
default:
return errUnsupportedSubFormat
}
z.seenStartOfImage = true
return nil
}
func (z *reader) finishDecode(alreadySeenEOL bool) error {
numberOfEOLs := 0
switch z.subFormat {
case Group3:
if z.truncated {
return nil
}
// The stream ends with a RTC (Return To Control) of 6 consecutive
// EOL's, but we should have already just seen an EOL, either in
// z.startDecode (for a zero-height image) or in z.decodeRow.
numberOfEOLs = 5
case Group4:
autoDetectHeight := z.rowsRemaining < 0
if autoDetectHeight {
// Aligning to a byte boundary was already handled by reader.Read.
} else if z.align {
z.br.alignToByteBoundary()
}
// The stream ends with two EOL's. If the first one is missing, and we
// had an explicit image height, we just assume that the trailing two
// EOL's were truncated and return a nil error.
if err := z.decodeEOL(); err != nil {
if (err == errMissingEOL) && !autoDetectHeight {
z.truncated = true
return nil
}
return err
}
numberOfEOLs = 1
default:
return errUnsupportedSubFormat
}
if alreadySeenEOL {
numberOfEOLs--
}
for ; numberOfEOLs > 0; numberOfEOLs-- {
if err := z.decodeEOL(); err != nil {
return err
}
}
return nil
}
func (z *reader) decodeEOL() error {
return decodeEOL(&z.br)
}
func (z *reader) decodeRow(finalRow bool) error {
z.wi = 0
z.atStartOfRow = true
z.penColorIsWhite = true
if z.align {
z.br.alignToByteBoundary()
}
switch z.subFormat {
case Group3:
for ; z.wi < len(z.curr); z.atStartOfRow = false {
if err := z.decodeRun(); err != nil {
return err
}
}
err := z.decodeEOL()
if finalRow && (err == errMissingEOL) {
z.truncated = true
return nil
}
return err
case Group4:
for ; z.wi < len(z.curr); z.atStartOfRow = false {
mode, err := decode(&z.br, modeDecodeTable[:])
if err != nil {
return err
}
rm := readerMode{}
if mode < uint32(len(readerModes)) {
rm = readerModes[mode]
}
if rm.function == nil {
return errInvalidMode
}
if err := rm.function(z, rm.arg); err != nil {
return err
}
}
return nil
}
return errUnsupportedSubFormat
}
func (z *reader) decodeRun() error {
table := blackDecodeTable[:]
if z.penColorIsWhite {
table = whiteDecodeTable[:]
}
total := 0
for {
n, err := decode(&z.br, table)
if err != nil {
return err
}
if n > maxWidth {
panic("unreachable")
}
total += int(n)
if total > maxWidth {
return errRunLengthTooLong
}
// Anything 0x3F or below is a terminal code.
if n <= 0x3F {
break
}
}
if total > (len(z.curr) - z.wi) {
return errRunLengthOverflowsWidth
}
dst := z.curr[z.wi : z.wi+total]
penColor := z.penColor()
for i := range dst {
dst[i] = penColor
}
z.wi += total
z.penColorIsWhite = !z.penColorIsWhite
return nil
}
// The various modes' semantics are based on determining a row of pixels'
// "changing elements": those pixels whose color differs from the one on its
// immediate left.
//
// The row above the first row is implicitly all white. Similarly, the column
// to the left of the first column is implicitly all white.
//
// For example, here's Figure 1 in "ITU-T Recommendation T.6", where the
// current and previous rows contain black (B) and white (w) pixels. The a?
// indexes point into curr, the b? indexes point into prev.
//
// b1 b2
// v v
// prev: BBBBBwwwwwBBBwwwww
// curr: BBBwwwwwBBBBBBwwww
// ^ ^ ^
// a0 a1 a2
//
// a0 is the "reference element" or current decoder position, roughly
// equivalent to what this implementation calls reader.wi.
//
// a1 is the next changing element to the right of a0, on the "coding line"
// (the current row).
//
// a2 is the next changing element to the right of a1, again on curr.
//
// b1 is the first changing element on the "reference line" (the previous row)
// to the right of a0 and of opposite color to a0.
//
// b2 is the next changing element to the right of b1, again on prev.
//
// The various modes calculate a1 (and a2, for modeH):
// - modePass calculates that a1 is at or to the right of b2.
// - modeH calculates a1 and a2 without considering b1 or b2.
// - modeV* calculates a1 to be b1 plus an adjustment (between -3 and +3).
const (
findB1 = false
findB2 = true
)
// findB finds either the b1 or b2 value.
func (z *reader) findB(whichB bool) int {
// The initial row is a special case. The previous row is implicitly all
// white, so that there are no changing pixel elements. We return b1 or b2
// to be at the end of the row.
if len(z.prev) != len(z.curr) {
return len(z.curr)
}
i := z.wi
if z.atStartOfRow {
// a0 is implicitly at -1, on a white pixel. b1 is the first black
// pixel in the previous row. b2 is the first white pixel after that.
for ; (i < len(z.prev)) && (z.prev[i] == 0xFF); i++ {
}
if whichB == findB2 {
for ; (i < len(z.prev)) && (z.prev[i] == 0x00); i++ {
}
}
return i
}
// As per figure 1 above, assume that the current pen color is white.
// First, walk past every contiguous black pixel in prev, starting at a0.
oppositeColor := ^z.penColor()
for ; (i < len(z.prev)) && (z.prev[i] == oppositeColor); i++ {
}
// Then walk past every contiguous white pixel.
penColor := ^oppositeColor
for ; (i < len(z.prev)) && (z.prev[i] == penColor); i++ {
}
// We're now at a black pixel (or at the end of the row). That's b1.
if whichB == findB2 {
// If we're looking for b2, walk past every contiguous black pixel
// again.
oppositeColor := ^penColor
for ; (i < len(z.prev)) && (z.prev[i] == oppositeColor); i++ {
}
}
return i
}
type readerMode struct {
function func(z *reader, arg int) error
arg int
}
var readerModes = [...]readerMode{
modePass: {function: readerModePass},
modeH: {function: readerModeH},
modeV0: {function: readerModeV, arg: +0},
modeVR1: {function: readerModeV, arg: +1},
modeVR2: {function: readerModeV, arg: +2},
modeVR3: {function: readerModeV, arg: +3},
modeVL1: {function: readerModeV, arg: -1},
modeVL2: {function: readerModeV, arg: -2},
modeVL3: {function: readerModeV, arg: -3},
modeExt: {function: readerModeExt},
}
func readerModePass(z *reader, arg int) error {
b2 := z.findB(findB2)
if (b2 < z.wi) || (len(z.curr) < b2) {
return errInvalidOffset
}
dst := z.curr[z.wi:b2]
penColor := z.penColor()
for i := range dst {
dst[i] = penColor
}
z.wi = b2
return nil
}
func readerModeH(z *reader, arg int) error {
// The first iteration finds a1. The second finds a2.
for i := 0; i < 2; i++ {
if err := z.decodeRun(); err != nil {
return err
}
}
return nil
}
func readerModeV(z *reader, arg int) error {
a1 := z.findB(findB1) + arg
if (a1 < z.wi) || (len(z.curr) < a1) {
return errInvalidOffset
}
dst := z.curr[z.wi:a1]
penColor := z.penColor()
for i := range dst {
dst[i] = penColor
}
z.wi = a1
z.penColorIsWhite = !z.penColorIsWhite
return nil
}
func readerModeExt(z *reader, arg int) error {
return errUnsupportedMode
}
// DecodeIntoGray decodes the CCITT-formatted data in r into dst.
//
// It returns an error if dst's width and height don't match the implied width
// and height of CCITT-formatted data.
func DecodeIntoGray(dst *image.Gray, r io.Reader, order Order, sf SubFormat, opts *Options) error {
bounds := dst.Bounds()
if (bounds.Dx() < 0) || (bounds.Dy() < 0) {
return errInvalidBounds
}
if bounds.Dx() > maxWidth {
return errUnsupportedWidth
}
z := reader{
br: bitReader{r: r, order: order},
subFormat: sf,
align: (opts != nil) && opts.Align,
invert: (opts != nil) && opts.Invert,
width: bounds.Dx(),
}
if err := z.startDecode(); err != nil {
return err
}
width := bounds.Dx()
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
p := (y - bounds.Min.Y) * dst.Stride
z.curr = dst.Pix[p : p+width]
if err := z.decodeRow(y+1 == bounds.Max.Y); err != nil {
return err
}
z.curr, z.prev = nil, z.curr
}
if err := z.finishDecode(false); err != nil {
return err
}
if z.invert {
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
p := (y - bounds.Min.Y) * dst.Stride
invertBytes(dst.Pix[p : p+width])
}
}
return nil
}
// NewReader returns an io.Reader that decodes the CCITT-formatted data in r.
// The resultant byte stream is one bit per pixel (MSB first), with 1 meaning
// white and 0 meaning black. Each row in the result is byte-aligned.
//
// A negative height, such as passing AutoDetectHeight, means that the image
// height is not known in advance. A negative width is invalid.
func NewReader(r io.Reader, order Order, sf SubFormat, width int, height int, opts *Options) io.Reader {
readErr := error(nil)
if width < 0 {
readErr = errInvalidBounds
} else if width > maxWidth {
readErr = errUnsupportedWidth
}
return &reader{
br: bitReader{r: r, order: order},
subFormat: sf,
align: (opts != nil) && opts.Align,
invert: (opts != nil) && opts.Invert,
width: width,
rowsRemaining: height,
readErr: readErr,
}
}

View File

@ -1,972 +0,0 @@
// generated by "go run gen.go". DO NOT EDIT.
package ccitt
// Each decodeTable is represented by an array of [2]int16's: a binary tree.
// Each array element (other than element 0, which means invalid) is a branch
// node in that tree. The root node is always element 1 (the second element).
//
// To walk the tree, look at the next bit in the bit stream, using it to select
// the first or second element of the [2]int16. If that int16 is 0, we have an
// invalid code. If it is positive, go to that branch node. If it is negative,
// then we have a leaf node, whose value is the bitwise complement (the ^
// operator) of that int16.
//
// Comments above each decodeTable also show the same structure visually. The
// "b123" lines show the 123'rd branch node. The "=XXXXX" lines show an invalid
// code. The "=v1234" lines show a leaf node with value 1234. When reading the
// bit stream, a 0 or 1 bit means to go up or down, as you move left to right.
//
// For example, in modeDecodeTable, branch node b005 is three steps up from the
// root node, meaning that we have already seen "000". If the next bit is "0"
// then we move to branch node b006. Otherwise, the next bit is "1", and we
// move to the leaf node v0000 (also known as the modePass constant). Indeed,
// the bits that encode modePass are "0001".
//
// Tables 1, 2 and 3 come from the "ITU-T Recommendation T.6: FACSIMILE CODING
// SCHEMES AND CODING CONTROL FUNCTIONS FOR GROUP 4 FACSIMILE APPARATUS"
// specification:
//
// https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-T.6-198811-I!!PDF-E&type=items
// modeDecodeTable represents Table 1 and the End-of-Line code.
//
// +=XXXXX
// b009 +-+
// | +=v0009
// b007 +-+
// | | +=v0008
// b010 | +-+
// | +=v0005
// b006 +-+
// | | +=v0007
// b008 | +-+
// | +=v0004
// b005 +-+
// | +=v0000
// b003 +-+
// | +=v0001
// b002 +-+
// | | +=v0006
// b004 | +-+
// | +=v0003
// b001 +-+
// +=v0002
var modeDecodeTable = [...][2]int16{
0: {0, 0},
1: {2, ^2},
2: {3, 4},
3: {5, ^1},
4: {^6, ^3},
5: {6, ^0},
6: {7, 8},
7: {9, 10},
8: {^7, ^4},
9: {0, ^9},
10: {^8, ^5},
}
// whiteDecodeTable represents Tables 2 and 3 for a white run.
//
// +=XXXXX
// b059 +-+
// | | +=v1792
// b096 | | +-+
// | | | | +=v1984
// b100 | | | +-+
// | | | +=v2048
// b094 | | +-+
// | | | | +=v2112
// b101 | | | | +-+
// | | | | | +=v2176
// b097 | | | +-+
// | | | | +=v2240
// b102 | | | +-+
// | | | +=v2304
// b085 | +-+
// | | +=v1856
// b098 | | +-+
// | | | +=v1920
// b095 | +-+
// | | +=v2368
// b103 | | +-+
// | | | +=v2432
// b099 | +-+
// | | +=v2496
// b104 | +-+
// | +=v2560
// b040 +-+
// | | +=v0029
// b060 | +-+
// | +=v0030
// b026 +-+
// | | +=v0045
// b061 | | +-+
// | | | +=v0046
// b041 | +-+
// | +=v0022
// b016 +-+
// | | +=v0023
// b042 | | +-+
// | | | | +=v0047
// b062 | | | +-+
// | | | +=v0048
// b027 | +-+
// | +=v0013
// b008 +-+
// | | +=v0020
// b043 | | +-+
// | | | | +=v0033
// b063 | | | +-+
// | | | +=v0034
// b028 | | +-+
// | | | | +=v0035
// b064 | | | | +-+
// | | | | | +=v0036
// b044 | | | +-+
// | | | | +=v0037
// b065 | | | +-+
// | | | +=v0038
// b017 | +-+
// | | +=v0019
// b045 | | +-+
// | | | | +=v0031
// b066 | | | +-+
// | | | +=v0032
// b029 | +-+
// | +=v0001
// b004 +-+
// | | +=v0012
// b030 | | +-+
// | | | | +=v0053
// b067 | | | | +-+
// | | | | | +=v0054
// b046 | | | +-+
// | | | +=v0026
// b018 | | +-+
// | | | | +=v0039
// b068 | | | | +-+
// | | | | | +=v0040
// b047 | | | | +-+
// | | | | | | +=v0041
// b069 | | | | | +-+
// | | | | | +=v0042
// b031 | | | +-+
// | | | | +=v0043
// b070 | | | | +-+
// | | | | | +=v0044
// b048 | | | +-+
// | | | +=v0021
// b009 | +-+
// | | +=v0028
// b049 | | +-+
// | | | | +=v0061
// b071 | | | +-+
// | | | +=v0062
// b032 | | +-+
// | | | | +=v0063
// b072 | | | | +-+
// | | | | | +=v0000
// b050 | | | +-+
// | | | | +=v0320
// b073 | | | +-+
// | | | +=v0384
// b019 | +-+
// | +=v0010
// b002 +-+
// | | +=v0011
// b020 | | +-+
// | | | | +=v0027
// b051 | | | | +-+
// | | | | | | +=v0059
// b074 | | | | | +-+
// | | | | | +=v0060
// b033 | | | +-+
// | | | | +=v1472
// b086 | | | | +-+
// | | | | | +=v1536
// b075 | | | | +-+
// | | | | | | +=v1600
// b087 | | | | | +-+
// | | | | | +=v1728
// b052 | | | +-+
// | | | +=v0018
// b010 | | +-+
// | | | | +=v0024
// b053 | | | | +-+
// | | | | | | +=v0049
// b076 | | | | | +-+
// | | | | | +=v0050
// b034 | | | | +-+
// | | | | | | +=v0051
// b077 | | | | | | +-+
// | | | | | | | +=v0052
// b054 | | | | | +-+
// | | | | | +=v0025
// b021 | | | +-+
// | | | | +=v0055
// b078 | | | | +-+
// | | | | | +=v0056
// b055 | | | | +-+
// | | | | | | +=v0057
// b079 | | | | | +-+
// | | | | | +=v0058
// b035 | | | +-+
// | | | +=v0192
// b005 | +-+
// | | +=v1664
// b036 | | +-+
// | | | | +=v0448
// b080 | | | | +-+
// | | | | | +=v0512
// b056 | | | +-+
// | | | | +=v0704
// b088 | | | | +-+
// | | | | | +=v0768
// b081 | | | +-+
// | | | +=v0640
// b022 | | +-+
// | | | | +=v0576
// b082 | | | | +-+
// | | | | | | +=v0832
// b089 | | | | | +-+
// | | | | | +=v0896
// b057 | | | | +-+
// | | | | | | +=v0960
// b090 | | | | | | +-+
// | | | | | | | +=v1024
// b083 | | | | | +-+
// | | | | | | +=v1088
// b091 | | | | | +-+
// | | | | | +=v1152
// b037 | | | +-+
// | | | | +=v1216
// b092 | | | | +-+
// | | | | | +=v1280
// b084 | | | | +-+
// | | | | | | +=v1344
// b093 | | | | | +-+
// | | | | | +=v1408
// b058 | | | +-+
// | | | +=v0256
// b011 | +-+
// | +=v0002
// b001 +-+
// | +=v0003
// b012 | +-+
// | | | +=v0128
// b023 | | +-+
// | | +=v0008
// b006 | +-+
// | | | +=v0009
// b024 | | | +-+
// | | | | | +=v0016
// b038 | | | | +-+
// | | | | +=v0017
// b013 | | +-+
// | | +=v0004
// b003 +-+
// | +=v0005
// b014 | +-+
// | | | +=v0014
// b039 | | | +-+
// | | | | +=v0015
// b025 | | +-+
// | | +=v0064
// b007 +-+
// | +=v0006
// b015 +-+
// +=v0007
var whiteDecodeTable = [...][2]int16{
0: {0, 0},
1: {2, 3},
2: {4, 5},
3: {6, 7},
4: {8, 9},
5: {10, 11},
6: {12, 13},
7: {14, 15},
8: {16, 17},
9: {18, 19},
10: {20, 21},
11: {22, ^2},
12: {^3, 23},
13: {24, ^4},
14: {^5, 25},
15: {^6, ^7},
16: {26, 27},
17: {28, 29},
18: {30, 31},
19: {32, ^10},
20: {^11, 33},
21: {34, 35},
22: {36, 37},
23: {^128, ^8},
24: {^9, 38},
25: {39, ^64},
26: {40, 41},
27: {42, ^13},
28: {43, 44},
29: {45, ^1},
30: {^12, 46},
31: {47, 48},
32: {49, 50},
33: {51, 52},
34: {53, 54},
35: {55, ^192},
36: {^1664, 56},
37: {57, 58},
38: {^16, ^17},
39: {^14, ^15},
40: {59, 60},
41: {61, ^22},
42: {^23, 62},
43: {^20, 63},
44: {64, 65},
45: {^19, 66},
46: {67, ^26},
47: {68, 69},
48: {70, ^21},
49: {^28, 71},
50: {72, 73},
51: {^27, 74},
52: {75, ^18},
53: {^24, 76},
54: {77, ^25},
55: {78, 79},
56: {80, 81},
57: {82, 83},
58: {84, ^256},
59: {0, 85},
60: {^29, ^30},
61: {^45, ^46},
62: {^47, ^48},
63: {^33, ^34},
64: {^35, ^36},
65: {^37, ^38},
66: {^31, ^32},
67: {^53, ^54},
68: {^39, ^40},
69: {^41, ^42},
70: {^43, ^44},
71: {^61, ^62},
72: {^63, ^0},
73: {^320, ^384},
74: {^59, ^60},
75: {86, 87},
76: {^49, ^50},
77: {^51, ^52},
78: {^55, ^56},
79: {^57, ^58},
80: {^448, ^512},
81: {88, ^640},
82: {^576, 89},
83: {90, 91},
84: {92, 93},
85: {94, 95},
86: {^1472, ^1536},
87: {^1600, ^1728},
88: {^704, ^768},
89: {^832, ^896},
90: {^960, ^1024},
91: {^1088, ^1152},
92: {^1216, ^1280},
93: {^1344, ^1408},
94: {96, 97},
95: {98, 99},
96: {^1792, 100},
97: {101, 102},
98: {^1856, ^1920},
99: {103, 104},
100: {^1984, ^2048},
101: {^2112, ^2176},
102: {^2240, ^2304},
103: {^2368, ^2432},
104: {^2496, ^2560},
}
// blackDecodeTable represents Tables 2 and 3 for a black run.
//
// +=XXXXX
// b017 +-+
// | | +=v1792
// b042 | | +-+
// | | | | +=v1984
// b063 | | | +-+
// | | | +=v2048
// b029 | | +-+
// | | | | +=v2112
// b064 | | | | +-+
// | | | | | +=v2176
// b043 | | | +-+
// | | | | +=v2240
// b065 | | | +-+
// | | | +=v2304
// b022 | +-+
// | | +=v1856
// b044 | | +-+
// | | | +=v1920
// b030 | +-+
// | | +=v2368
// b066 | | +-+
// | | | +=v2432
// b045 | +-+
// | | +=v2496
// b067 | +-+
// | +=v2560
// b013 +-+
// | | +=v0018
// b031 | | +-+
// | | | | +=v0052
// b068 | | | | +-+
// | | | | | | +=v0640
// b095 | | | | | +-+
// | | | | | +=v0704
// b046 | | | +-+
// | | | | +=v0768
// b096 | | | | +-+
// | | | | | +=v0832
// b069 | | | +-+
// | | | +=v0055
// b023 | | +-+
// | | | | +=v0056
// b070 | | | | +-+
// | | | | | | +=v1280
// b097 | | | | | +-+
// | | | | | +=v1344
// b047 | | | | +-+
// | | | | | | +=v1408
// b098 | | | | | | +-+
// | | | | | | | +=v1472
// b071 | | | | | +-+
// | | | | | +=v0059
// b032 | | | +-+
// | | | | +=v0060
// b072 | | | | +-+
// | | | | | | +=v1536
// b099 | | | | | +-+
// | | | | | +=v1600
// b048 | | | +-+
// | | | +=v0024
// b018 | +-+
// | | +=v0025
// b049 | | +-+
// | | | | +=v1664
// b100 | | | | +-+
// | | | | | +=v1728
// b073 | | | +-+
// | | | +=v0320
// b033 | | +-+
// | | | | +=v0384
// b074 | | | | +-+
// | | | | | +=v0448
// b050 | | | +-+
// | | | | +=v0512
// b101 | | | | +-+
// | | | | | +=v0576
// b075 | | | +-+
// | | | +=v0053
// b024 | +-+
// | | +=v0054
// b076 | | +-+
// | | | | +=v0896
// b102 | | | +-+
// | | | +=v0960
// b051 | | +-+
// | | | | +=v1024
// b103 | | | | +-+
// | | | | | +=v1088
// b077 | | | +-+
// | | | | +=v1152
// b104 | | | +-+
// | | | +=v1216
// b034 | +-+
// | +=v0064
// b010 +-+
// | | +=v0013
// b019 | | +-+
// | | | | +=v0023
// b052 | | | | +-+
// | | | | | | +=v0050
// b078 | | | | | +-+
// | | | | | +=v0051
// b035 | | | | +-+
// | | | | | | +=v0044
// b079 | | | | | | +-+
// | | | | | | | +=v0045
// b053 | | | | | +-+
// | | | | | | +=v0046
// b080 | | | | | +-+
// | | | | | +=v0047
// b025 | | | +-+
// | | | | +=v0057
// b081 | | | | +-+
// | | | | | +=v0058
// b054 | | | | +-+
// | | | | | | +=v0061
// b082 | | | | | +-+
// | | | | | +=v0256
// b036 | | | +-+
// | | | +=v0016
// b014 | +-+
// | | +=v0017
// b037 | | +-+
// | | | | +=v0048
// b083 | | | | +-+
// | | | | | +=v0049
// b055 | | | +-+
// | | | | +=v0062
// b084 | | | +-+
// | | | +=v0063
// b026 | | +-+
// | | | | +=v0030
// b085 | | | | +-+
// | | | | | +=v0031
// b056 | | | | +-+
// | | | | | | +=v0032
// b086 | | | | | +-+
// | | | | | +=v0033
// b038 | | | +-+
// | | | | +=v0040
// b087 | | | | +-+
// | | | | | +=v0041
// b057 | | | +-+
// | | | +=v0022
// b020 | +-+
// | +=v0014
// b008 +-+
// | | +=v0010
// b015 | | +-+
// | | | +=v0011
// b011 | +-+
// | | +=v0015
// b027 | | +-+
// | | | | +=v0128
// b088 | | | | +-+
// | | | | | +=v0192
// b058 | | | | +-+
// | | | | | | +=v0026
// b089 | | | | | +-+
// | | | | | +=v0027
// b039 | | | +-+
// | | | | +=v0028
// b090 | | | | +-+
// | | | | | +=v0029
// b059 | | | +-+
// | | | +=v0019
// b021 | | +-+
// | | | | +=v0020
// b060 | | | | +-+
// | | | | | | +=v0034
// b091 | | | | | +-+
// | | | | | +=v0035
// b040 | | | | +-+
// | | | | | | +=v0036
// b092 | | | | | | +-+
// | | | | | | | +=v0037
// b061 | | | | | +-+
// | | | | | | +=v0038
// b093 | | | | | +-+
// | | | | | +=v0039
// b028 | | | +-+
// | | | | +=v0021
// b062 | | | | +-+
// | | | | | | +=v0042
// b094 | | | | | +-+
// | | | | | +=v0043
// b041 | | | +-+
// | | | +=v0000
// b016 | +-+
// | +=v0012
// b006 +-+
// | | +=v0009
// b012 | | +-+
// | | | +=v0008
// b009 | +-+
// | +=v0007
// b004 +-+
// | | +=v0006
// b007 | +-+
// | +=v0005
// b002 +-+
// | | +=v0001
// b005 | +-+
// | +=v0004
// b001 +-+
// | +=v0003
// b003 +-+
// +=v0002
var blackDecodeTable = [...][2]int16{
0: {0, 0},
1: {2, 3},
2: {4, 5},
3: {^3, ^2},
4: {6, 7},
5: {^1, ^4},
6: {8, 9},
7: {^6, ^5},
8: {10, 11},
9: {12, ^7},
10: {13, 14},
11: {15, 16},
12: {^9, ^8},
13: {17, 18},
14: {19, 20},
15: {^10, ^11},
16: {21, ^12},
17: {0, 22},
18: {23, 24},
19: {^13, 25},
20: {26, ^14},
21: {27, 28},
22: {29, 30},
23: {31, 32},
24: {33, 34},
25: {35, 36},
26: {37, 38},
27: {^15, 39},
28: {40, 41},
29: {42, 43},
30: {44, 45},
31: {^18, 46},
32: {47, 48},
33: {49, 50},
34: {51, ^64},
35: {52, 53},
36: {54, ^16},
37: {^17, 55},
38: {56, 57},
39: {58, 59},
40: {60, 61},
41: {62, ^0},
42: {^1792, 63},
43: {64, 65},
44: {^1856, ^1920},
45: {66, 67},
46: {68, 69},
47: {70, 71},
48: {72, ^24},
49: {^25, 73},
50: {74, 75},
51: {76, 77},
52: {^23, 78},
53: {79, 80},
54: {81, 82},
55: {83, 84},
56: {85, 86},
57: {87, ^22},
58: {88, 89},
59: {90, ^19},
60: {^20, 91},
61: {92, 93},
62: {^21, 94},
63: {^1984, ^2048},
64: {^2112, ^2176},
65: {^2240, ^2304},
66: {^2368, ^2432},
67: {^2496, ^2560},
68: {^52, 95},
69: {96, ^55},
70: {^56, 97},
71: {98, ^59},
72: {^60, 99},
73: {100, ^320},
74: {^384, ^448},
75: {101, ^53},
76: {^54, 102},
77: {103, 104},
78: {^50, ^51},
79: {^44, ^45},
80: {^46, ^47},
81: {^57, ^58},
82: {^61, ^256},
83: {^48, ^49},
84: {^62, ^63},
85: {^30, ^31},
86: {^32, ^33},
87: {^40, ^41},
88: {^128, ^192},
89: {^26, ^27},
90: {^28, ^29},
91: {^34, ^35},
92: {^36, ^37},
93: {^38, ^39},
94: {^42, ^43},
95: {^640, ^704},
96: {^768, ^832},
97: {^1280, ^1344},
98: {^1408, ^1472},
99: {^1536, ^1600},
100: {^1664, ^1728},
101: {^512, ^576},
102: {^896, ^960},
103: {^1024, ^1088},
104: {^1152, ^1216},
}
const maxCodeLength = 13
// Each encodeTable is represented by an array of bitStrings.
// bitString is a pair of uint32 values representing a bit code.
// The nBits low bits of bits make up the actual bit code.
// Eg. bitString{0x0004, 8} represents the bitcode "00000100".
type bitString struct {
bits uint32
nBits uint32
}
// modeEncodeTable represents Table 1 and the End-of-Line code.
var modeEncodeTable = [...]bitString{
0: {0x0001, 4}, // "0001"
1: {0x0001, 3}, // "001"
2: {0x0001, 1}, // "1"
3: {0x0003, 3}, // "011"
4: {0x0003, 6}, // "000011"
5: {0x0003, 7}, // "0000011"
6: {0x0002, 3}, // "010"
7: {0x0002, 6}, // "000010"
8: {0x0002, 7}, // "0000010"
9: {0x0001, 7}, // "0000001"
}
// whiteEncodeTable2 represents Table 2 for a white run.
var whiteEncodeTable2 = [...]bitString{
0: {0x0035, 8}, // "00110101"
1: {0x0007, 6}, // "000111"
2: {0x0007, 4}, // "0111"
3: {0x0008, 4}, // "1000"
4: {0x000b, 4}, // "1011"
5: {0x000c, 4}, // "1100"
6: {0x000e, 4}, // "1110"
7: {0x000f, 4}, // "1111"
8: {0x0013, 5}, // "10011"
9: {0x0014, 5}, // "10100"
10: {0x0007, 5}, // "00111"
11: {0x0008, 5}, // "01000"
12: {0x0008, 6}, // "001000"
13: {0x0003, 6}, // "000011"
14: {0x0034, 6}, // "110100"
15: {0x0035, 6}, // "110101"
16: {0x002a, 6}, // "101010"
17: {0x002b, 6}, // "101011"
18: {0x0027, 7}, // "0100111"
19: {0x000c, 7}, // "0001100"
20: {0x0008, 7}, // "0001000"
21: {0x0017, 7}, // "0010111"
22: {0x0003, 7}, // "0000011"
23: {0x0004, 7}, // "0000100"
24: {0x0028, 7}, // "0101000"
25: {0x002b, 7}, // "0101011"
26: {0x0013, 7}, // "0010011"
27: {0x0024, 7}, // "0100100"
28: {0x0018, 7}, // "0011000"
29: {0x0002, 8}, // "00000010"
30: {0x0003, 8}, // "00000011"
31: {0x001a, 8}, // "00011010"
32: {0x001b, 8}, // "00011011"
33: {0x0012, 8}, // "00010010"
34: {0x0013, 8}, // "00010011"
35: {0x0014, 8}, // "00010100"
36: {0x0015, 8}, // "00010101"
37: {0x0016, 8}, // "00010110"
38: {0x0017, 8}, // "00010111"
39: {0x0028, 8}, // "00101000"
40: {0x0029, 8}, // "00101001"
41: {0x002a, 8}, // "00101010"
42: {0x002b, 8}, // "00101011"
43: {0x002c, 8}, // "00101100"
44: {0x002d, 8}, // "00101101"
45: {0x0004, 8}, // "00000100"
46: {0x0005, 8}, // "00000101"
47: {0x000a, 8}, // "00001010"
48: {0x000b, 8}, // "00001011"
49: {0x0052, 8}, // "01010010"
50: {0x0053, 8}, // "01010011"
51: {0x0054, 8}, // "01010100"
52: {0x0055, 8}, // "01010101"
53: {0x0024, 8}, // "00100100"
54: {0x0025, 8}, // "00100101"
55: {0x0058, 8}, // "01011000"
56: {0x0059, 8}, // "01011001"
57: {0x005a, 8}, // "01011010"
58: {0x005b, 8}, // "01011011"
59: {0x004a, 8}, // "01001010"
60: {0x004b, 8}, // "01001011"
61: {0x0032, 8}, // "00110010"
62: {0x0033, 8}, // "00110011"
63: {0x0034, 8}, // "00110100"
}
// whiteEncodeTable3 represents Table 3 for a white run.
var whiteEncodeTable3 = [...]bitString{
0: {0x001b, 5}, // "11011"
1: {0x0012, 5}, // "10010"
2: {0x0017, 6}, // "010111"
3: {0x0037, 7}, // "0110111"
4: {0x0036, 8}, // "00110110"
5: {0x0037, 8}, // "00110111"
6: {0x0064, 8}, // "01100100"
7: {0x0065, 8}, // "01100101"
8: {0x0068, 8}, // "01101000"
9: {0x0067, 8}, // "01100111"
10: {0x00cc, 9}, // "011001100"
11: {0x00cd, 9}, // "011001101"
12: {0x00d2, 9}, // "011010010"
13: {0x00d3, 9}, // "011010011"
14: {0x00d4, 9}, // "011010100"
15: {0x00d5, 9}, // "011010101"
16: {0x00d6, 9}, // "011010110"
17: {0x00d7, 9}, // "011010111"
18: {0x00d8, 9}, // "011011000"
19: {0x00d9, 9}, // "011011001"
20: {0x00da, 9}, // "011011010"
21: {0x00db, 9}, // "011011011"
22: {0x0098, 9}, // "010011000"
23: {0x0099, 9}, // "010011001"
24: {0x009a, 9}, // "010011010"
25: {0x0018, 6}, // "011000"
26: {0x009b, 9}, // "010011011"
27: {0x0008, 11}, // "00000001000"
28: {0x000c, 11}, // "00000001100"
29: {0x000d, 11}, // "00000001101"
30: {0x0012, 12}, // "000000010010"
31: {0x0013, 12}, // "000000010011"
32: {0x0014, 12}, // "000000010100"
33: {0x0015, 12}, // "000000010101"
34: {0x0016, 12}, // "000000010110"
35: {0x0017, 12}, // "000000010111"
36: {0x001c, 12}, // "000000011100"
37: {0x001d, 12}, // "000000011101"
38: {0x001e, 12}, // "000000011110"
39: {0x001f, 12}, // "000000011111"
}
// blackEncodeTable2 represents Table 2 for a black run.
var blackEncodeTable2 = [...]bitString{
0: {0x0037, 10}, // "0000110111"
1: {0x0002, 3}, // "010"
2: {0x0003, 2}, // "11"
3: {0x0002, 2}, // "10"
4: {0x0003, 3}, // "011"
5: {0x0003, 4}, // "0011"
6: {0x0002, 4}, // "0010"
7: {0x0003, 5}, // "00011"
8: {0x0005, 6}, // "000101"
9: {0x0004, 6}, // "000100"
10: {0x0004, 7}, // "0000100"
11: {0x0005, 7}, // "0000101"
12: {0x0007, 7}, // "0000111"
13: {0x0004, 8}, // "00000100"
14: {0x0007, 8}, // "00000111"
15: {0x0018, 9}, // "000011000"
16: {0x0017, 10}, // "0000010111"
17: {0x0018, 10}, // "0000011000"
18: {0x0008, 10}, // "0000001000"
19: {0x0067, 11}, // "00001100111"
20: {0x0068, 11}, // "00001101000"
21: {0x006c, 11}, // "00001101100"
22: {0x0037, 11}, // "00000110111"
23: {0x0028, 11}, // "00000101000"
24: {0x0017, 11}, // "00000010111"
25: {0x0018, 11}, // "00000011000"
26: {0x00ca, 12}, // "000011001010"
27: {0x00cb, 12}, // "000011001011"
28: {0x00cc, 12}, // "000011001100"
29: {0x00cd, 12}, // "000011001101"
30: {0x0068, 12}, // "000001101000"
31: {0x0069, 12}, // "000001101001"
32: {0x006a, 12}, // "000001101010"
33: {0x006b, 12}, // "000001101011"
34: {0x00d2, 12}, // "000011010010"
35: {0x00d3, 12}, // "000011010011"
36: {0x00d4, 12}, // "000011010100"
37: {0x00d5, 12}, // "000011010101"
38: {0x00d6, 12}, // "000011010110"
39: {0x00d7, 12}, // "000011010111"
40: {0x006c, 12}, // "000001101100"
41: {0x006d, 12}, // "000001101101"
42: {0x00da, 12}, // "000011011010"
43: {0x00db, 12}, // "000011011011"
44: {0x0054, 12}, // "000001010100"
45: {0x0055, 12}, // "000001010101"
46: {0x0056, 12}, // "000001010110"
47: {0x0057, 12}, // "000001010111"
48: {0x0064, 12}, // "000001100100"
49: {0x0065, 12}, // "000001100101"
50: {0x0052, 12}, // "000001010010"
51: {0x0053, 12}, // "000001010011"
52: {0x0024, 12}, // "000000100100"
53: {0x0037, 12}, // "000000110111"
54: {0x0038, 12}, // "000000111000"
55: {0x0027, 12}, // "000000100111"
56: {0x0028, 12}, // "000000101000"
57: {0x0058, 12}, // "000001011000"
58: {0x0059, 12}, // "000001011001"
59: {0x002b, 12}, // "000000101011"
60: {0x002c, 12}, // "000000101100"
61: {0x005a, 12}, // "000001011010"
62: {0x0066, 12}, // "000001100110"
63: {0x0067, 12}, // "000001100111"
}
// blackEncodeTable3 represents Table 3 for a black run.
var blackEncodeTable3 = [...]bitString{
0: {0x000f, 10}, // "0000001111"
1: {0x00c8, 12}, // "000011001000"
2: {0x00c9, 12}, // "000011001001"
3: {0x005b, 12}, // "000001011011"
4: {0x0033, 12}, // "000000110011"
5: {0x0034, 12}, // "000000110100"
6: {0x0035, 12}, // "000000110101"
7: {0x006c, 13}, // "0000001101100"
8: {0x006d, 13}, // "0000001101101"
9: {0x004a, 13}, // "0000001001010"
10: {0x004b, 13}, // "0000001001011"
11: {0x004c, 13}, // "0000001001100"
12: {0x004d, 13}, // "0000001001101"
13: {0x0072, 13}, // "0000001110010"
14: {0x0073, 13}, // "0000001110011"
15: {0x0074, 13}, // "0000001110100"
16: {0x0075, 13}, // "0000001110101"
17: {0x0076, 13}, // "0000001110110"
18: {0x0077, 13}, // "0000001110111"
19: {0x0052, 13}, // "0000001010010"
20: {0x0053, 13}, // "0000001010011"
21: {0x0054, 13}, // "0000001010100"
22: {0x0055, 13}, // "0000001010101"
23: {0x005a, 13}, // "0000001011010"
24: {0x005b, 13}, // "0000001011011"
25: {0x0064, 13}, // "0000001100100"
26: {0x0065, 13}, // "0000001100101"
27: {0x0008, 11}, // "00000001000"
28: {0x000c, 11}, // "00000001100"
29: {0x000d, 11}, // "00000001101"
30: {0x0012, 12}, // "000000010010"
31: {0x0013, 12}, // "000000010011"
32: {0x0014, 12}, // "000000010100"
33: {0x0015, 12}, // "000000010101"
34: {0x0016, 12}, // "000000010110"
35: {0x0017, 12}, // "000000010111"
36: {0x001c, 12}, // "000000011100"
37: {0x001d, 12}, // "000000011101"
38: {0x001e, 12}, // "000000011110"
39: {0x001f, 12}, // "000000011111"
}
// COPY PASTE table.go BEGIN
const (
modePass = iota // Pass
modeH // Horizontal
modeV0 // Vertical-0
modeVR1 // Vertical-Right-1
modeVR2 // Vertical-Right-2
modeVR3 // Vertical-Right-3
modeVL1 // Vertical-Left-1
modeVL2 // Vertical-Left-2
modeVL3 // Vertical-Left-3
modeExt // Extension
)
// COPY PASTE table.go END

View File

@ -1,102 +0,0 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ccitt
import (
"encoding/binary"
"io"
)
type bitWriter struct {
w io.Writer
// order is whether to process w's bytes LSB first or MSB first.
order Order
// The high nBits bits of the bits field hold encoded bits to be written to w.
bits uint64
nBits uint32
// bytes[:bw] holds encoded bytes not yet written to w.
// Overflow protection is ensured by using a multiple of 8 as bytes length.
bw uint32
bytes [1024]uint8
}
// flushBits copies 64 bits from b.bits to b.bytes. If b.bytes is then full, it
// is written to b.w.
func (b *bitWriter) flushBits() error {
binary.BigEndian.PutUint64(b.bytes[b.bw:], b.bits)
b.bits = 0
b.nBits = 0
b.bw += 8
if b.bw < uint32(len(b.bytes)) {
return nil
}
b.bw = 0
if b.order != MSB {
reverseBitsWithinBytes(b.bytes[:])
}
_, err := b.w.Write(b.bytes[:])
return err
}
// close finalizes a bitcode stream by writing any
// pending bits to bitWriter's underlying io.Writer.
func (b *bitWriter) close() error {
// Write any encoded bits to bytes.
if b.nBits > 0 {
binary.BigEndian.PutUint64(b.bytes[b.bw:], b.bits)
b.bw += (b.nBits + 7) >> 3
}
if b.order != MSB {
reverseBitsWithinBytes(b.bytes[:b.bw])
}
// Write b.bw bytes to b.w.
_, err := b.w.Write(b.bytes[:b.bw])
return err
}
// alignToByteBoundary rounds b.nBits up to a multiple of 8.
// If all 64 bits are used, flush them to bitWriter's bytes.
func (b *bitWriter) alignToByteBoundary() error {
if b.nBits = (b.nBits + 7) &^ 7; b.nBits == 64 {
return b.flushBits()
}
return nil
}
// writeCode writes a variable length bitcode to b's underlying io.Writer.
func (b *bitWriter) writeCode(bs bitString) error {
bits := bs.bits
nBits := bs.nBits
if 64-b.nBits >= nBits {
// b.bits has sufficient room for storing nBits bits.
b.bits |= uint64(bits) << (64 - nBits - b.nBits)
b.nBits += nBits
if b.nBits == 64 {
return b.flushBits()
}
return nil
}
// Number of leading bits that fill b.bits.
i := 64 - b.nBits
// Fill b.bits then flush and write remaining bits.
b.bits |= uint64(bits) >> (nBits - i)
b.nBits = 64
if err := b.flushBits(); err != nil {
return err
}
nBits -= i
b.bits = uint64(bits) << (64 - nBits)
b.nBits = nBits
return nil
}

403
vendor/golang.org/x/image/vp8/decode.go generated vendored Normal file
View File

@ -0,0 +1,403 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package vp8 implements a decoder for the VP8 lossy image format.
//
// The VP8 specification is RFC 6386.
package vp8 // import "golang.org/x/image/vp8"
// This file implements the top-level decoding algorithm.
import (
"errors"
"image"
"io"
)
// limitReader wraps an io.Reader to read at most n bytes from it.
type limitReader struct {
r io.Reader
n int
}
// ReadFull reads exactly len(p) bytes into p.
func (r *limitReader) ReadFull(p []byte) error {
if len(p) > r.n {
return io.ErrUnexpectedEOF
}
n, err := io.ReadFull(r.r, p)
r.n -= n
return err
}
// FrameHeader is a frame header, as specified in section 9.1.
type FrameHeader struct {
KeyFrame bool
VersionNumber uint8
ShowFrame bool
FirstPartitionLen uint32
Width int
Height int
XScale uint8
YScale uint8
}
const (
nSegment = 4
nSegmentProb = 3
)
// segmentHeader holds segment-related header information.
type segmentHeader struct {
useSegment bool
updateMap bool
relativeDelta bool
quantizer [nSegment]int8
filterStrength [nSegment]int8
prob [nSegmentProb]uint8
}
const (
nRefLFDelta = 4
nModeLFDelta = 4
)
// filterHeader holds filter-related header information.
type filterHeader struct {
simple bool
level int8
sharpness uint8
useLFDelta bool
refLFDelta [nRefLFDelta]int8
modeLFDelta [nModeLFDelta]int8
perSegmentLevel [nSegment]int8
}
// mb is the per-macroblock decode state. A decoder maintains mbw+1 of these
// as it is decoding macroblocks left-to-right and top-to-bottom: mbw for the
// macroblocks in the row above, and one for the macroblock to the left.
type mb struct {
// pred is the predictor mode for the 4 bottom or right 4x4 luma regions.
pred [4]uint8
// nzMask is a mask of 8 bits: 4 for the bottom or right 4x4 luma regions,
// and 2 + 2 for the bottom or right 4x4 chroma regions. A 1 bit indicates
// that region has non-zero coefficients.
nzMask uint8
// nzY16 is a 0/1 value that is 1 if the macroblock used Y16 prediction and
// had non-zero coefficients.
nzY16 uint8
}
// Decoder decodes VP8 bitstreams into frames. Decoding one frame consists of
// calling Init, DecodeFrameHeader and then DecodeFrame in that order.
// A Decoder can be re-used to decode multiple frames.
type Decoder struct {
// r is the input bitsream.
r limitReader
// scratch is a scratch buffer.
scratch [8]byte
// img is the YCbCr image to decode into.
img *image.YCbCr
// mbw and mbh are the number of 16x16 macroblocks wide and high the image is.
mbw, mbh int
// frameHeader is the frame header. When decoding multiple frames,
// frames that aren't key frames will inherit the Width, Height,
// XScale and YScale of the most recent key frame.
frameHeader FrameHeader
// Other headers.
segmentHeader segmentHeader
filterHeader filterHeader
// The image data is divided into a number of independent partitions.
// There is 1 "first partition" and between 1 and 8 "other partitions"
// for coefficient data.
fp partition
op [8]partition
nOP int
// Quantization factors.
quant [nSegment]quant
// DCT/WHT coefficient decoding probabilities.
tokenProb [nPlane][nBand][nContext][nProb]uint8
useSkipProb bool
skipProb uint8
// Loop filter parameters.
filterParams [nSegment][2]filterParam
perMBFilterParams []filterParam
// The eight fields below relate to the current macroblock being decoded.
//
// Segment-based adjustments.
segment int
// Per-macroblock state for the macroblock immediately left of and those
// macroblocks immediately above the current macroblock.
leftMB mb
upMB []mb
// Bitmasks for which 4x4 regions of coeff contain non-zero coefficients.
nzDCMask, nzACMask uint32
// Predictor modes.
usePredY16 bool // The libwebp C code calls this !is_i4x4_.
predY16 uint8
predC8 uint8
predY4 [4][4]uint8
// The two fields below form a workspace for reconstructing a macroblock.
// Their specific sizes are documented in reconstruct.go.
coeff [1*16*16 + 2*8*8 + 1*4*4]int16
ybr [1 + 16 + 1 + 8][32]uint8
}
// NewDecoder returns a new Decoder.
func NewDecoder() *Decoder {
return &Decoder{}
}
// Init initializes the decoder to read at most n bytes from r.
func (d *Decoder) Init(r io.Reader, n int) {
d.r = limitReader{r, n}
}
// DecodeFrameHeader decodes the frame header.
func (d *Decoder) DecodeFrameHeader() (fh FrameHeader, err error) {
// All frame headers are at least 3 bytes long.
b := d.scratch[:3]
if err = d.r.ReadFull(b); err != nil {
return
}
d.frameHeader.KeyFrame = (b[0] & 1) == 0
d.frameHeader.VersionNumber = (b[0] >> 1) & 7
d.frameHeader.ShowFrame = (b[0]>>4)&1 == 1
d.frameHeader.FirstPartitionLen = uint32(b[0])>>5 | uint32(b[1])<<3 | uint32(b[2])<<11
if !d.frameHeader.KeyFrame {
return d.frameHeader, nil
}
// Frame headers for key frames are an additional 7 bytes long.
b = d.scratch[:7]
if err = d.r.ReadFull(b); err != nil {
return
}
// Check the magic sync code.
if b[0] != 0x9d || b[1] != 0x01 || b[2] != 0x2a {
err = errors.New("vp8: invalid format")
return
}
d.frameHeader.Width = int(b[4]&0x3f)<<8 | int(b[3])
d.frameHeader.Height = int(b[6]&0x3f)<<8 | int(b[5])
d.frameHeader.XScale = b[4] >> 6
d.frameHeader.YScale = b[6] >> 6
d.mbw = (d.frameHeader.Width + 0x0f) >> 4
d.mbh = (d.frameHeader.Height + 0x0f) >> 4
d.segmentHeader = segmentHeader{
prob: [3]uint8{0xff, 0xff, 0xff},
}
d.tokenProb = defaultTokenProb
d.segment = 0
return d.frameHeader, nil
}
// ensureImg ensures that d.img is large enough to hold the decoded frame.
func (d *Decoder) ensureImg() {
if d.img != nil {
p0, p1 := d.img.Rect.Min, d.img.Rect.Max
if p0.X == 0 && p0.Y == 0 && p1.X >= 16*d.mbw && p1.Y >= 16*d.mbh {
return
}
}
m := image.NewYCbCr(image.Rect(0, 0, 16*d.mbw, 16*d.mbh), image.YCbCrSubsampleRatio420)
d.img = m.SubImage(image.Rect(0, 0, d.frameHeader.Width, d.frameHeader.Height)).(*image.YCbCr)
d.perMBFilterParams = make([]filterParam, d.mbw*d.mbh)
d.upMB = make([]mb, d.mbw)
}
// parseSegmentHeader parses the segment header, as specified in section 9.3.
func (d *Decoder) parseSegmentHeader() {
d.segmentHeader.useSegment = d.fp.readBit(uniformProb)
if !d.segmentHeader.useSegment {
d.segmentHeader.updateMap = false
return
}
d.segmentHeader.updateMap = d.fp.readBit(uniformProb)
if d.fp.readBit(uniformProb) {
d.segmentHeader.relativeDelta = !d.fp.readBit(uniformProb)
for i := range d.segmentHeader.quantizer {
d.segmentHeader.quantizer[i] = int8(d.fp.readOptionalInt(uniformProb, 7))
}
for i := range d.segmentHeader.filterStrength {
d.segmentHeader.filterStrength[i] = int8(d.fp.readOptionalInt(uniformProb, 6))
}
}
if !d.segmentHeader.updateMap {
return
}
for i := range d.segmentHeader.prob {
if d.fp.readBit(uniformProb) {
d.segmentHeader.prob[i] = uint8(d.fp.readUint(uniformProb, 8))
} else {
d.segmentHeader.prob[i] = 0xff
}
}
}
// parseFilterHeader parses the filter header, as specified in section 9.4.
func (d *Decoder) parseFilterHeader() {
d.filterHeader.simple = d.fp.readBit(uniformProb)
d.filterHeader.level = int8(d.fp.readUint(uniformProb, 6))
d.filterHeader.sharpness = uint8(d.fp.readUint(uniformProb, 3))
d.filterHeader.useLFDelta = d.fp.readBit(uniformProb)
if d.filterHeader.useLFDelta && d.fp.readBit(uniformProb) {
for i := range d.filterHeader.refLFDelta {
d.filterHeader.refLFDelta[i] = int8(d.fp.readOptionalInt(uniformProb, 6))
}
for i := range d.filterHeader.modeLFDelta {
d.filterHeader.modeLFDelta[i] = int8(d.fp.readOptionalInt(uniformProb, 6))
}
}
if d.filterHeader.level == 0 {
return
}
if d.segmentHeader.useSegment {
for i := range d.filterHeader.perSegmentLevel {
strength := d.segmentHeader.filterStrength[i]
if d.segmentHeader.relativeDelta {
strength += d.filterHeader.level
}
d.filterHeader.perSegmentLevel[i] = strength
}
} else {
d.filterHeader.perSegmentLevel[0] = d.filterHeader.level
}
d.computeFilterParams()
}
// parseOtherPartitions parses the other partitions, as specified in section 9.5.
func (d *Decoder) parseOtherPartitions() error {
const maxNOP = 1 << 3
var partLens [maxNOP]int
d.nOP = 1 << d.fp.readUint(uniformProb, 2)
// The final partition length is implied by the remaining chunk data
// (d.r.n) and the other d.nOP-1 partition lengths. Those d.nOP-1 partition
// lengths are stored as 24-bit uints, i.e. up to 16 MiB per partition.
n := 3 * (d.nOP - 1)
partLens[d.nOP-1] = d.r.n - n
if partLens[d.nOP-1] < 0 {
return io.ErrUnexpectedEOF
}
if n > 0 {
buf := make([]byte, n)
if err := d.r.ReadFull(buf); err != nil {
return err
}
for i := 0; i < d.nOP-1; i++ {
pl := int(buf[3*i+0]) | int(buf[3*i+1])<<8 | int(buf[3*i+2])<<16
if pl > partLens[d.nOP-1] {
return io.ErrUnexpectedEOF
}
partLens[i] = pl
partLens[d.nOP-1] -= pl
}
}
// We check if the final partition length can also fit into a 24-bit uint.
// Strictly speaking, this isn't part of the spec, but it guards against a
// malicious WEBP image that is too large to ReadFull the encoded DCT
// coefficients into memory, whether that's because the actual WEBP file is
// too large, or whether its RIFF metadata lists too large a chunk.
if 1<<24 <= partLens[d.nOP-1] {
return errors.New("vp8: too much data to decode")
}
buf := make([]byte, d.r.n)
if err := d.r.ReadFull(buf); err != nil {
return err
}
for i, pl := range partLens {
if i == d.nOP {
break
}
d.op[i].init(buf[:pl])
buf = buf[pl:]
}
return nil
}
// parseOtherHeaders parses header information other than the frame header.
func (d *Decoder) parseOtherHeaders() error {
// Initialize and parse the first partition.
firstPartition := make([]byte, d.frameHeader.FirstPartitionLen)
if err := d.r.ReadFull(firstPartition); err != nil {
return err
}
d.fp.init(firstPartition)
if d.frameHeader.KeyFrame {
// Read and ignore the color space and pixel clamp values. They are
// specified in section 9.2, but are unimplemented.
d.fp.readBit(uniformProb)
d.fp.readBit(uniformProb)
}
d.parseSegmentHeader()
d.parseFilterHeader()
if err := d.parseOtherPartitions(); err != nil {
return err
}
d.parseQuant()
if !d.frameHeader.KeyFrame {
// Golden and AltRef frames are specified in section 9.7.
// TODO(nigeltao): implement. Note that they are only used for video, not still images.
return errors.New("vp8: Golden / AltRef frames are not implemented")
}
// Read and ignore the refreshLastFrameBuffer bit, specified in section 9.8.
// It applies only to video, and not still images.
d.fp.readBit(uniformProb)
d.parseTokenProb()
d.useSkipProb = d.fp.readBit(uniformProb)
if d.useSkipProb {
d.skipProb = uint8(d.fp.readUint(uniformProb, 8))
}
if d.fp.unexpectedEOF {
return io.ErrUnexpectedEOF
}
return nil
}
// DecodeFrame decodes the frame and returns it as an YCbCr image.
// The image's contents are valid up until the next call to Decoder.Init.
func (d *Decoder) DecodeFrame() (*image.YCbCr, error) {
d.ensureImg()
if err := d.parseOtherHeaders(); err != nil {
return nil, err
}
// Reconstruct the rows.
for mbx := 0; mbx < d.mbw; mbx++ {
d.upMB[mbx] = mb{}
}
for mby := 0; mby < d.mbh; mby++ {
d.leftMB = mb{}
for mbx := 0; mbx < d.mbw; mbx++ {
skip := d.reconstruct(mbx, mby)
fs := d.filterParams[d.segment][btou(!d.usePredY16)]
fs.inner = fs.inner || !skip
d.perMBFilterParams[d.mbw*mby+mbx] = fs
}
}
if d.fp.unexpectedEOF {
return nil, io.ErrUnexpectedEOF
}
for i := 0; i < d.nOP; i++ {
if d.op[i].unexpectedEOF {
return nil, io.ErrUnexpectedEOF
}
}
// Apply the loop filter.
//
// Even if we are using per-segment levels, section 15 says that "loop
// filtering must be skipped entirely if loop_filter_level at either the
// frame header level or macroblock override level is 0".
if d.filterHeader.level != 0 {
if d.filterHeader.simple {
d.simpleFilter()
} else {
d.normalFilter()
}
}
return d.img, nil
}

273
vendor/golang.org/x/image/vp8/filter.go generated vendored Normal file
View File

@ -0,0 +1,273 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package vp8
// filter2 modifies a 2-pixel wide or 2-pixel high band along an edge.
func filter2(pix []byte, level, index, iStep, jStep int) {
for n := 16; n > 0; n, index = n-1, index+iStep {
p1 := int(pix[index-2*jStep])
p0 := int(pix[index-1*jStep])
q0 := int(pix[index+0*jStep])
q1 := int(pix[index+1*jStep])
if abs(p0-q0)<<1+abs(p1-q1)>>1 > level {
continue
}
a := 3*(q0-p0) + clamp127(p1-q1)
a1 := clamp15((a + 4) >> 3)
a2 := clamp15((a + 3) >> 3)
pix[index-1*jStep] = clamp255(p0 + a2)
pix[index+0*jStep] = clamp255(q0 - a1)
}
}
// filter246 modifies a 2-, 4- or 6-pixel wide or high band along an edge.
func filter246(pix []byte, n, level, ilevel, hlevel, index, iStep, jStep int, fourNotSix bool) {
for ; n > 0; n, index = n-1, index+iStep {
p3 := int(pix[index-4*jStep])
p2 := int(pix[index-3*jStep])
p1 := int(pix[index-2*jStep])
p0 := int(pix[index-1*jStep])
q0 := int(pix[index+0*jStep])
q1 := int(pix[index+1*jStep])
q2 := int(pix[index+2*jStep])
q3 := int(pix[index+3*jStep])
if abs(p0-q0)<<1+abs(p1-q1)>>1 > level {
continue
}
if abs(p3-p2) > ilevel ||
abs(p2-p1) > ilevel ||
abs(p1-p0) > ilevel ||
abs(q1-q0) > ilevel ||
abs(q2-q1) > ilevel ||
abs(q3-q2) > ilevel {
continue
}
if abs(p1-p0) > hlevel || abs(q1-q0) > hlevel {
// Filter 2 pixels.
a := 3*(q0-p0) + clamp127(p1-q1)
a1 := clamp15((a + 4) >> 3)
a2 := clamp15((a + 3) >> 3)
pix[index-1*jStep] = clamp255(p0 + a2)
pix[index+0*jStep] = clamp255(q0 - a1)
} else if fourNotSix {
// Filter 4 pixels.
a := 3 * (q0 - p0)
a1 := clamp15((a + 4) >> 3)
a2 := clamp15((a + 3) >> 3)
a3 := (a1 + 1) >> 1
pix[index-2*jStep] = clamp255(p1 + a3)
pix[index-1*jStep] = clamp255(p0 + a2)
pix[index+0*jStep] = clamp255(q0 - a1)
pix[index+1*jStep] = clamp255(q1 - a3)
} else {
// Filter 6 pixels.
a := clamp127(3*(q0-p0) + clamp127(p1-q1))
a1 := (27*a + 63) >> 7
a2 := (18*a + 63) >> 7
a3 := (9*a + 63) >> 7
pix[index-3*jStep] = clamp255(p2 + a3)
pix[index-2*jStep] = clamp255(p1 + a2)
pix[index-1*jStep] = clamp255(p0 + a1)
pix[index+0*jStep] = clamp255(q0 - a1)
pix[index+1*jStep] = clamp255(q1 - a2)
pix[index+2*jStep] = clamp255(q2 - a3)
}
}
}
// simpleFilter implements the simple filter, as specified in section 15.2.
func (d *Decoder) simpleFilter() {
for mby := 0; mby < d.mbh; mby++ {
for mbx := 0; mbx < d.mbw; mbx++ {
f := d.perMBFilterParams[d.mbw*mby+mbx]
if f.level == 0 {
continue
}
l := int(f.level)
yIndex := (mby*d.img.YStride + mbx) * 16
if mbx > 0 {
filter2(d.img.Y, l+4, yIndex, d.img.YStride, 1)
}
if f.inner {
filter2(d.img.Y, l, yIndex+0x4, d.img.YStride, 1)
filter2(d.img.Y, l, yIndex+0x8, d.img.YStride, 1)
filter2(d.img.Y, l, yIndex+0xc, d.img.YStride, 1)
}
if mby > 0 {
filter2(d.img.Y, l+4, yIndex, 1, d.img.YStride)
}
if f.inner {
filter2(d.img.Y, l, yIndex+d.img.YStride*0x4, 1, d.img.YStride)
filter2(d.img.Y, l, yIndex+d.img.YStride*0x8, 1, d.img.YStride)
filter2(d.img.Y, l, yIndex+d.img.YStride*0xc, 1, d.img.YStride)
}
}
}
}
// normalFilter implements the normal filter, as specified in section 15.3.
func (d *Decoder) normalFilter() {
for mby := 0; mby < d.mbh; mby++ {
for mbx := 0; mbx < d.mbw; mbx++ {
f := d.perMBFilterParams[d.mbw*mby+mbx]
if f.level == 0 {
continue
}
l, il, hl := int(f.level), int(f.ilevel), int(f.hlevel)
yIndex := (mby*d.img.YStride + mbx) * 16
cIndex := (mby*d.img.CStride + mbx) * 8
if mbx > 0 {
filter246(d.img.Y, 16, l+4, il, hl, yIndex, d.img.YStride, 1, false)
filter246(d.img.Cb, 8, l+4, il, hl, cIndex, d.img.CStride, 1, false)
filter246(d.img.Cr, 8, l+4, il, hl, cIndex, d.img.CStride, 1, false)
}
if f.inner {
filter246(d.img.Y, 16, l, il, hl, yIndex+0x4, d.img.YStride, 1, true)
filter246(d.img.Y, 16, l, il, hl, yIndex+0x8, d.img.YStride, 1, true)
filter246(d.img.Y, 16, l, il, hl, yIndex+0xc, d.img.YStride, 1, true)
filter246(d.img.Cb, 8, l, il, hl, cIndex+0x4, d.img.CStride, 1, true)
filter246(d.img.Cr, 8, l, il, hl, cIndex+0x4, d.img.CStride, 1, true)
}
if mby > 0 {
filter246(d.img.Y, 16, l+4, il, hl, yIndex, 1, d.img.YStride, false)
filter246(d.img.Cb, 8, l+4, il, hl, cIndex, 1, d.img.CStride, false)
filter246(d.img.Cr, 8, l+4, il, hl, cIndex, 1, d.img.CStride, false)
}
if f.inner {
filter246(d.img.Y, 16, l, il, hl, yIndex+d.img.YStride*0x4, 1, d.img.YStride, true)
filter246(d.img.Y, 16, l, il, hl, yIndex+d.img.YStride*0x8, 1, d.img.YStride, true)
filter246(d.img.Y, 16, l, il, hl, yIndex+d.img.YStride*0xc, 1, d.img.YStride, true)
filter246(d.img.Cb, 8, l, il, hl, cIndex+d.img.CStride*0x4, 1, d.img.CStride, true)
filter246(d.img.Cr, 8, l, il, hl, cIndex+d.img.CStride*0x4, 1, d.img.CStride, true)
}
}
}
}
// filterParam holds the loop filter parameters for a macroblock.
type filterParam struct {
// The first three fields are thresholds used by the loop filter to smooth
// over the edges and interior of a macroblock. level is used by both the
// simple and normal filters. The inner level and high edge variance level
// are only used by the normal filter.
level, ilevel, hlevel uint8
// inner is whether the inner loop filter cannot be optimized out as a
// no-op for this particular macroblock.
inner bool
}
// computeFilterParams computes the loop filter parameters, as specified in
// section 15.4.
func (d *Decoder) computeFilterParams() {
for i := range d.filterParams {
baseLevel := d.filterHeader.level
if d.segmentHeader.useSegment {
baseLevel = d.segmentHeader.filterStrength[i]
if d.segmentHeader.relativeDelta {
baseLevel += d.filterHeader.level
}
}
for j := range d.filterParams[i] {
p := &d.filterParams[i][j]
p.inner = j != 0
level := baseLevel
if d.filterHeader.useLFDelta {
// The libwebp C code has a "TODO: only CURRENT is handled for now."
level += d.filterHeader.refLFDelta[0]
if j != 0 {
level += d.filterHeader.modeLFDelta[0]
}
}
if level <= 0 {
p.level = 0
continue
}
if level > 63 {
level = 63
}
ilevel := level
if d.filterHeader.sharpness > 0 {
if d.filterHeader.sharpness > 4 {
ilevel >>= 2
} else {
ilevel >>= 1
}
if x := int8(9 - d.filterHeader.sharpness); ilevel > x {
ilevel = x
}
}
if ilevel < 1 {
ilevel = 1
}
p.ilevel = uint8(ilevel)
p.level = uint8(2*level + ilevel)
if d.frameHeader.KeyFrame {
if level < 15 {
p.hlevel = 0
} else if level < 40 {
p.hlevel = 1
} else {
p.hlevel = 2
}
} else {
if level < 15 {
p.hlevel = 0
} else if level < 20 {
p.hlevel = 1
} else if level < 40 {
p.hlevel = 2
} else {
p.hlevel = 3
}
}
}
}
}
// intSize is either 32 or 64.
const intSize = 32 << (^uint(0) >> 63)
func abs(x int) int {
// m := -1 if x < 0. m := 0 otherwise.
m := x >> (intSize - 1)
// In two's complement representation, the negative number
// of any number (except the smallest one) can be computed
// by flipping all the bits and add 1. This is faster than
// code with a branch.
// See Hacker's Delight, section 2-4.
return (x ^ m) - m
}
func clamp15(x int) int {
if x < -16 {
return -16
}
if x > 15 {
return 15
}
return x
}
func clamp127(x int) int {
if x < -128 {
return -128
}
if x > 127 {
return 127
}
return x
}
func clamp255(x int) uint8 {
if x < 0 {
return 0
}
if x > 255 {
return 255
}
return uint8(x)
}

98
vendor/golang.org/x/image/vp8/idct.go generated vendored Normal file
View File

@ -0,0 +1,98 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package vp8
// This file implements the inverse Discrete Cosine Transform and the inverse
// Walsh Hadamard Transform (WHT), as specified in sections 14.3 and 14.4.
func clip8(i int32) uint8 {
if i < 0 {
return 0
}
if i > 255 {
return 255
}
return uint8(i)
}
func (z *Decoder) inverseDCT4(y, x, coeffBase int) {
const (
c1 = 85627 // 65536 * cos(pi/8) * sqrt(2).
c2 = 35468 // 65536 * sin(pi/8) * sqrt(2).
)
var m [4][4]int32
for i := 0; i < 4; i++ {
a := int32(z.coeff[coeffBase+0]) + int32(z.coeff[coeffBase+8])
b := int32(z.coeff[coeffBase+0]) - int32(z.coeff[coeffBase+8])
c := (int32(z.coeff[coeffBase+4])*c2)>>16 - (int32(z.coeff[coeffBase+12])*c1)>>16
d := (int32(z.coeff[coeffBase+4])*c1)>>16 + (int32(z.coeff[coeffBase+12])*c2)>>16
m[i][0] = a + d
m[i][1] = b + c
m[i][2] = b - c
m[i][3] = a - d
coeffBase++
}
for j := 0; j < 4; j++ {
dc := m[0][j] + 4
a := dc + m[2][j]
b := dc - m[2][j]
c := (m[1][j]*c2)>>16 - (m[3][j]*c1)>>16
d := (m[1][j]*c1)>>16 + (m[3][j]*c2)>>16
z.ybr[y+j][x+0] = clip8(int32(z.ybr[y+j][x+0]) + (a+d)>>3)
z.ybr[y+j][x+1] = clip8(int32(z.ybr[y+j][x+1]) + (b+c)>>3)
z.ybr[y+j][x+2] = clip8(int32(z.ybr[y+j][x+2]) + (b-c)>>3)
z.ybr[y+j][x+3] = clip8(int32(z.ybr[y+j][x+3]) + (a-d)>>3)
}
}
func (z *Decoder) inverseDCT4DCOnly(y, x, coeffBase int) {
dc := (int32(z.coeff[coeffBase+0]) + 4) >> 3
for j := 0; j < 4; j++ {
for i := 0; i < 4; i++ {
z.ybr[y+j][x+i] = clip8(int32(z.ybr[y+j][x+i]) + dc)
}
}
}
func (z *Decoder) inverseDCT8(y, x, coeffBase int) {
z.inverseDCT4(y+0, x+0, coeffBase+0*16)
z.inverseDCT4(y+0, x+4, coeffBase+1*16)
z.inverseDCT4(y+4, x+0, coeffBase+2*16)
z.inverseDCT4(y+4, x+4, coeffBase+3*16)
}
func (z *Decoder) inverseDCT8DCOnly(y, x, coeffBase int) {
z.inverseDCT4DCOnly(y+0, x+0, coeffBase+0*16)
z.inverseDCT4DCOnly(y+0, x+4, coeffBase+1*16)
z.inverseDCT4DCOnly(y+4, x+0, coeffBase+2*16)
z.inverseDCT4DCOnly(y+4, x+4, coeffBase+3*16)
}
func (d *Decoder) inverseWHT16() {
var m [16]int32
for i := 0; i < 4; i++ {
a0 := int32(d.coeff[384+0+i]) + int32(d.coeff[384+12+i])
a1 := int32(d.coeff[384+4+i]) + int32(d.coeff[384+8+i])
a2 := int32(d.coeff[384+4+i]) - int32(d.coeff[384+8+i])
a3 := int32(d.coeff[384+0+i]) - int32(d.coeff[384+12+i])
m[0+i] = a0 + a1
m[8+i] = a0 - a1
m[4+i] = a3 + a2
m[12+i] = a3 - a2
}
out := 0
for i := 0; i < 4; i++ {
dc := m[0+i*4] + 3
a0 := dc + m[3+i*4]
a1 := m[1+i*4] + m[2+i*4]
a2 := m[1+i*4] - m[2+i*4]
a3 := dc - m[3+i*4]
d.coeff[out+0] = int16((a0 + a1) >> 3)
d.coeff[out+16] = int16((a3 + a2) >> 3)
d.coeff[out+32] = int16((a0 - a1) >> 3)
d.coeff[out+48] = int16((a3 - a2) >> 3)
out += 64
}
}

129
vendor/golang.org/x/image/vp8/partition.go generated vendored Normal file
View File

@ -0,0 +1,129 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package vp8
// Each VP8 frame consists of between 2 and 9 bitstream partitions.
// Each partition is byte-aligned and is independently arithmetic-encoded.
//
// This file implements decoding a partition's bitstream, as specified in
// chapter 7. The implementation follows libwebp's approach instead of the
// specification's reference C implementation. For example, we use a look-up
// table instead of a for loop to recalibrate the encoded range.
var (
lutShift = [127]uint8{
7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
}
lutRangeM1 = [127]uint8{
127,
127, 191,
127, 159, 191, 223,
127, 143, 159, 175, 191, 207, 223, 239,
127, 135, 143, 151, 159, 167, 175, 183, 191, 199, 207, 215, 223, 231, 239, 247,
127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 183, 187,
191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251,
127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157,
159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189,
191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221,
223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253,
}
)
// uniformProb represents a 50% probability that the next bit is 0.
const uniformProb = 128
// partition holds arithmetic-coded bits.
type partition struct {
// buf is the input bytes.
buf []byte
// r is how many of buf's bytes have been consumed.
r int
// rangeM1 is range minus 1, where range is in the arithmetic coding sense,
// not the Go language sense.
rangeM1 uint32
// bits and nBits hold those bits shifted out of buf but not yet consumed.
bits uint32
nBits uint8
// unexpectedEOF tells whether we tried to read past buf.
unexpectedEOF bool
}
// init initializes the partition.
func (p *partition) init(buf []byte) {
p.buf = buf
p.r = 0
p.rangeM1 = 254
p.bits = 0
p.nBits = 0
p.unexpectedEOF = false
}
// readBit returns the next bit.
func (p *partition) readBit(prob uint8) bool {
if p.nBits < 8 {
if p.r >= len(p.buf) {
p.unexpectedEOF = true
return false
}
// Expression split for 386 compiler.
x := uint32(p.buf[p.r])
p.bits |= x << (8 - p.nBits)
p.r++
p.nBits += 8
}
split := (p.rangeM1*uint32(prob))>>8 + 1
bit := p.bits >= split<<8
if bit {
p.rangeM1 -= split
p.bits -= split << 8
} else {
p.rangeM1 = split - 1
}
if p.rangeM1 < 127 {
shift := lutShift[p.rangeM1]
p.rangeM1 = uint32(lutRangeM1[p.rangeM1])
p.bits <<= shift
p.nBits -= shift
}
return bit
}
// readUint returns the next n-bit unsigned integer.
func (p *partition) readUint(prob, n uint8) uint32 {
var u uint32
for n > 0 {
n--
if p.readBit(prob) {
u |= 1 << n
}
}
return u
}
// readInt returns the next n-bit signed integer.
func (p *partition) readInt(prob, n uint8) int32 {
u := p.readUint(prob, n)
b := p.readBit(prob)
if b {
return -int32(u)
}
return int32(u)
}
// readOptionalInt returns the next n-bit signed integer in an encoding
// where the likely result is zero.
func (p *partition) readOptionalInt(prob, n uint8) int32 {
if !p.readBit(prob) {
return 0
}
return p.readInt(prob, n)
}

201
vendor/golang.org/x/image/vp8/pred.go generated vendored Normal file
View File

@ -0,0 +1,201 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package vp8
// This file implements parsing the predictor modes, as specified in chapter
// 11.
func (d *Decoder) parsePredModeY16(mbx int) {
var p uint8
if !d.fp.readBit(156) {
if !d.fp.readBit(163) {
p = predDC
} else {
p = predVE
}
} else if !d.fp.readBit(128) {
p = predHE
} else {
p = predTM
}
for i := 0; i < 4; i++ {
d.upMB[mbx].pred[i] = p
d.leftMB.pred[i] = p
}
d.predY16 = p
}
func (d *Decoder) parsePredModeC8() {
if !d.fp.readBit(142) {
d.predC8 = predDC
} else if !d.fp.readBit(114) {
d.predC8 = predVE
} else if !d.fp.readBit(183) {
d.predC8 = predHE
} else {
d.predC8 = predTM
}
}
func (d *Decoder) parsePredModeY4(mbx int) {
for j := 0; j < 4; j++ {
p := d.leftMB.pred[j]
for i := 0; i < 4; i++ {
prob := &predProb[d.upMB[mbx].pred[i]][p]
if !d.fp.readBit(prob[0]) {
p = predDC
} else if !d.fp.readBit(prob[1]) {
p = predTM
} else if !d.fp.readBit(prob[2]) {
p = predVE
} else if !d.fp.readBit(prob[3]) {
if !d.fp.readBit(prob[4]) {
p = predHE
} else if !d.fp.readBit(prob[5]) {
p = predRD
} else {
p = predVR
}
} else if !d.fp.readBit(prob[6]) {
p = predLD
} else if !d.fp.readBit(prob[7]) {
p = predVL
} else if !d.fp.readBit(prob[8]) {
p = predHD
} else {
p = predHU
}
d.predY4[j][i] = p
d.upMB[mbx].pred[i] = p
}
d.leftMB.pred[j] = p
}
}
// predProb are the probabilities to decode a 4x4 region's predictor mode given
// the predictor modes of the regions above and left of it.
// These values are specified in section 11.5.
var predProb = [nPred][nPred][9]uint8{
{
{231, 120, 48, 89, 115, 113, 120, 152, 112},
{152, 179, 64, 126, 170, 118, 46, 70, 95},
{175, 69, 143, 80, 85, 82, 72, 155, 103},
{56, 58, 10, 171, 218, 189, 17, 13, 152},
{114, 26, 17, 163, 44, 195, 21, 10, 173},
{121, 24, 80, 195, 26, 62, 44, 64, 85},
{144, 71, 10, 38, 171, 213, 144, 34, 26},
{170, 46, 55, 19, 136, 160, 33, 206, 71},
{63, 20, 8, 114, 114, 208, 12, 9, 226},
{81, 40, 11, 96, 182, 84, 29, 16, 36},
},
{
{134, 183, 89, 137, 98, 101, 106, 165, 148},
{72, 187, 100, 130, 157, 111, 32, 75, 80},
{66, 102, 167, 99, 74, 62, 40, 234, 128},
{41, 53, 9, 178, 241, 141, 26, 8, 107},
{74, 43, 26, 146, 73, 166, 49, 23, 157},
{65, 38, 105, 160, 51, 52, 31, 115, 128},
{104, 79, 12, 27, 217, 255, 87, 17, 7},
{87, 68, 71, 44, 114, 51, 15, 186, 23},
{47, 41, 14, 110, 182, 183, 21, 17, 194},
{66, 45, 25, 102, 197, 189, 23, 18, 22},
},
{
{88, 88, 147, 150, 42, 46, 45, 196, 205},
{43, 97, 183, 117, 85, 38, 35, 179, 61},
{39, 53, 200, 87, 26, 21, 43, 232, 171},
{56, 34, 51, 104, 114, 102, 29, 93, 77},
{39, 28, 85, 171, 58, 165, 90, 98, 64},
{34, 22, 116, 206, 23, 34, 43, 166, 73},
{107, 54, 32, 26, 51, 1, 81, 43, 31},
{68, 25, 106, 22, 64, 171, 36, 225, 114},
{34, 19, 21, 102, 132, 188, 16, 76, 124},
{62, 18, 78, 95, 85, 57, 50, 48, 51},
},
{
{193, 101, 35, 159, 215, 111, 89, 46, 111},
{60, 148, 31, 172, 219, 228, 21, 18, 111},
{112, 113, 77, 85, 179, 255, 38, 120, 114},
{40, 42, 1, 196, 245, 209, 10, 25, 109},
{88, 43, 29, 140, 166, 213, 37, 43, 154},
{61, 63, 30, 155, 67, 45, 68, 1, 209},
{100, 80, 8, 43, 154, 1, 51, 26, 71},
{142, 78, 78, 16, 255, 128, 34, 197, 171},
{41, 40, 5, 102, 211, 183, 4, 1, 221},
{51, 50, 17, 168, 209, 192, 23, 25, 82},
},
{
{138, 31, 36, 171, 27, 166, 38, 44, 229},
{67, 87, 58, 169, 82, 115, 26, 59, 179},
{63, 59, 90, 180, 59, 166, 93, 73, 154},
{40, 40, 21, 116, 143, 209, 34, 39, 175},
{47, 15, 16, 183, 34, 223, 49, 45, 183},
{46, 17, 33, 183, 6, 98, 15, 32, 183},
{57, 46, 22, 24, 128, 1, 54, 17, 37},
{65, 32, 73, 115, 28, 128, 23, 128, 205},
{40, 3, 9, 115, 51, 192, 18, 6, 223},
{87, 37, 9, 115, 59, 77, 64, 21, 47},
},
{
{104, 55, 44, 218, 9, 54, 53, 130, 226},
{64, 90, 70, 205, 40, 41, 23, 26, 57},
{54, 57, 112, 184, 5, 41, 38, 166, 213},
{30, 34, 26, 133, 152, 116, 10, 32, 134},
{39, 19, 53, 221, 26, 114, 32, 73, 255},
{31, 9, 65, 234, 2, 15, 1, 118, 73},
{75, 32, 12, 51, 192, 255, 160, 43, 51},
{88, 31, 35, 67, 102, 85, 55, 186, 85},
{56, 21, 23, 111, 59, 205, 45, 37, 192},
{55, 38, 70, 124, 73, 102, 1, 34, 98},
},
{
{125, 98, 42, 88, 104, 85, 117, 175, 82},
{95, 84, 53, 89, 128, 100, 113, 101, 45},
{75, 79, 123, 47, 51, 128, 81, 171, 1},
{57, 17, 5, 71, 102, 57, 53, 41, 49},
{38, 33, 13, 121, 57, 73, 26, 1, 85},
{41, 10, 67, 138, 77, 110, 90, 47, 114},
{115, 21, 2, 10, 102, 255, 166, 23, 6},
{101, 29, 16, 10, 85, 128, 101, 196, 26},
{57, 18, 10, 102, 102, 213, 34, 20, 43},
{117, 20, 15, 36, 163, 128, 68, 1, 26},
},
{
{102, 61, 71, 37, 34, 53, 31, 243, 192},
{69, 60, 71, 38, 73, 119, 28, 222, 37},
{68, 45, 128, 34, 1, 47, 11, 245, 171},
{62, 17, 19, 70, 146, 85, 55, 62, 70},
{37, 43, 37, 154, 100, 163, 85, 160, 1},
{63, 9, 92, 136, 28, 64, 32, 201, 85},
{75, 15, 9, 9, 64, 255, 184, 119, 16},
{86, 6, 28, 5, 64, 255, 25, 248, 1},
{56, 8, 17, 132, 137, 255, 55, 116, 128},
{58, 15, 20, 82, 135, 57, 26, 121, 40},
},
{
{164, 50, 31, 137, 154, 133, 25, 35, 218},
{51, 103, 44, 131, 131, 123, 31, 6, 158},
{86, 40, 64, 135, 148, 224, 45, 183, 128},
{22, 26, 17, 131, 240, 154, 14, 1, 209},
{45, 16, 21, 91, 64, 222, 7, 1, 197},
{56, 21, 39, 155, 60, 138, 23, 102, 213},
{83, 12, 13, 54, 192, 255, 68, 47, 28},
{85, 26, 85, 85, 128, 128, 32, 146, 171},
{18, 11, 7, 63, 144, 171, 4, 4, 246},
{35, 27, 10, 146, 174, 171, 12, 26, 128},
},
{
{190, 80, 35, 99, 180, 80, 126, 54, 45},
{85, 126, 47, 87, 176, 51, 41, 20, 32},
{101, 75, 128, 139, 118, 146, 116, 128, 85},
{56, 41, 15, 176, 236, 85, 37, 9, 62},
{71, 30, 17, 119, 118, 255, 17, 18, 138},
{101, 38, 60, 138, 55, 70, 43, 26, 142},
{146, 36, 19, 30, 171, 255, 97, 27, 20},
{138, 45, 61, 62, 219, 1, 81, 188, 64},
{32, 41, 20, 117, 151, 142, 20, 21, 163},
{112, 19, 12, 61, 195, 128, 48, 4, 24},
},
}

553
vendor/golang.org/x/image/vp8/predfunc.go generated vendored Normal file
View File

@ -0,0 +1,553 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package vp8
// This file implements the predicition functions, as specified in chapter 12.
//
// For each macroblock (of 1x16x16 luma and 2x8x8 chroma coefficients), the
// luma values are either predicted as one large 16x16 region or 16 separate
// 4x4 regions. The chroma values are always predicted as one 8x8 region.
//
// For 4x4 regions, the target block's predicted values (Xs) are a function of
// its previously-decoded top and left border values, as well as a number of
// pixels from the top-right:
//
// a b c d e f g h
// p X X X X
// q X X X X
// r X X X X
// s X X X X
//
// The predictor modes are:
// - DC: all Xs = (b + c + d + e + p + q + r + s + 4) / 8.
// - TM: the first X = (b + p - a), the second X = (c + p - a), and so on.
// - VE: each X = the weighted average of its column's top value and that
// value's neighbors, i.e. averages of abc, bcd, cde or def.
// - HE: similar to VE except rows instead of columns, and the final row is
// an average of r, s and s.
// - RD, VR, LD, VL, HD, HU: these diagonal modes ("Right Down", "Vertical
// Right", etc) are more complicated and are described in section 12.3.
// All Xs are clipped to the range [0, 255].
//
// For 8x8 and 16x16 regions, the target block's predicted values are a
// function of the top and left border values without the top-right overhang,
// i.e. without the 8x8 or 16x16 equivalent of f, g and h. Furthermore:
// - There are no diagonal predictor modes, only DC, TM, VE and HE.
// - The DC mode has variants for macroblocks in the top row and/or left
// column, i.e. for macroblocks with mby == 0 || mbx == 0.
// - The VE and HE modes take only the column top or row left values; they do
// not smooth that top/left value with its neighbors.
// nPred is the number of predictor modes, not including the Top/Left versions
// of the DC predictor mode.
const nPred = 10
const (
predDC = iota
predTM
predVE
predHE
predRD
predVR
predLD
predVL
predHD
predHU
predDCTop
predDCLeft
predDCTopLeft
)
func checkTopLeftPred(mbx, mby int, p uint8) uint8 {
if p != predDC {
return p
}
if mbx == 0 {
if mby == 0 {
return predDCTopLeft
}
return predDCLeft
}
if mby == 0 {
return predDCTop
}
return predDC
}
var predFunc4 = [...]func(*Decoder, int, int){
predFunc4DC,
predFunc4TM,
predFunc4VE,
predFunc4HE,
predFunc4RD,
predFunc4VR,
predFunc4LD,
predFunc4VL,
predFunc4HD,
predFunc4HU,
nil,
nil,
nil,
}
var predFunc8 = [...]func(*Decoder, int, int){
predFunc8DC,
predFunc8TM,
predFunc8VE,
predFunc8HE,
nil,
nil,
nil,
nil,
nil,
nil,
predFunc8DCTop,
predFunc8DCLeft,
predFunc8DCTopLeft,
}
var predFunc16 = [...]func(*Decoder, int, int){
predFunc16DC,
predFunc16TM,
predFunc16VE,
predFunc16HE,
nil,
nil,
nil,
nil,
nil,
nil,
predFunc16DCTop,
predFunc16DCLeft,
predFunc16DCTopLeft,
}
func predFunc4DC(z *Decoder, y, x int) {
sum := uint32(4)
for i := 0; i < 4; i++ {
sum += uint32(z.ybr[y-1][x+i])
}
for j := 0; j < 4; j++ {
sum += uint32(z.ybr[y+j][x-1])
}
avg := uint8(sum / 8)
for j := 0; j < 4; j++ {
for i := 0; i < 4; i++ {
z.ybr[y+j][x+i] = avg
}
}
}
func predFunc4TM(z *Decoder, y, x int) {
delta0 := -int32(z.ybr[y-1][x-1])
for j := 0; j < 4; j++ {
delta1 := delta0 + int32(z.ybr[y+j][x-1])
for i := 0; i < 4; i++ {
delta2 := delta1 + int32(z.ybr[y-1][x+i])
z.ybr[y+j][x+i] = uint8(clip(delta2, 0, 255))
}
}
}
func predFunc4VE(z *Decoder, y, x int) {
a := int32(z.ybr[y-1][x-1])
b := int32(z.ybr[y-1][x+0])
c := int32(z.ybr[y-1][x+1])
d := int32(z.ybr[y-1][x+2])
e := int32(z.ybr[y-1][x+3])
f := int32(z.ybr[y-1][x+4])
abc := uint8((a + 2*b + c + 2) / 4)
bcd := uint8((b + 2*c + d + 2) / 4)
cde := uint8((c + 2*d + e + 2) / 4)
def := uint8((d + 2*e + f + 2) / 4)
for j := 0; j < 4; j++ {
z.ybr[y+j][x+0] = abc
z.ybr[y+j][x+1] = bcd
z.ybr[y+j][x+2] = cde
z.ybr[y+j][x+3] = def
}
}
func predFunc4HE(z *Decoder, y, x int) {
s := int32(z.ybr[y+3][x-1])
r := int32(z.ybr[y+2][x-1])
q := int32(z.ybr[y+1][x-1])
p := int32(z.ybr[y+0][x-1])
a := int32(z.ybr[y-1][x-1])
ssr := uint8((s + 2*s + r + 2) / 4)
srq := uint8((s + 2*r + q + 2) / 4)
rqp := uint8((r + 2*q + p + 2) / 4)
apq := uint8((a + 2*p + q + 2) / 4)
for i := 0; i < 4; i++ {
z.ybr[y+0][x+i] = apq
z.ybr[y+1][x+i] = rqp
z.ybr[y+2][x+i] = srq
z.ybr[y+3][x+i] = ssr
}
}
func predFunc4RD(z *Decoder, y, x int) {
s := int32(z.ybr[y+3][x-1])
r := int32(z.ybr[y+2][x-1])
q := int32(z.ybr[y+1][x-1])
p := int32(z.ybr[y+0][x-1])
a := int32(z.ybr[y-1][x-1])
b := int32(z.ybr[y-1][x+0])
c := int32(z.ybr[y-1][x+1])
d := int32(z.ybr[y-1][x+2])
e := int32(z.ybr[y-1][x+3])
srq := uint8((s + 2*r + q + 2) / 4)
rqp := uint8((r + 2*q + p + 2) / 4)
qpa := uint8((q + 2*p + a + 2) / 4)
pab := uint8((p + 2*a + b + 2) / 4)
abc := uint8((a + 2*b + c + 2) / 4)
bcd := uint8((b + 2*c + d + 2) / 4)
cde := uint8((c + 2*d + e + 2) / 4)
z.ybr[y+0][x+0] = pab
z.ybr[y+0][x+1] = abc
z.ybr[y+0][x+2] = bcd
z.ybr[y+0][x+3] = cde
z.ybr[y+1][x+0] = qpa
z.ybr[y+1][x+1] = pab
z.ybr[y+1][x+2] = abc
z.ybr[y+1][x+3] = bcd
z.ybr[y+2][x+0] = rqp
z.ybr[y+2][x+1] = qpa
z.ybr[y+2][x+2] = pab
z.ybr[y+2][x+3] = abc
z.ybr[y+3][x+0] = srq
z.ybr[y+3][x+1] = rqp
z.ybr[y+3][x+2] = qpa
z.ybr[y+3][x+3] = pab
}
func predFunc4VR(z *Decoder, y, x int) {
r := int32(z.ybr[y+2][x-1])
q := int32(z.ybr[y+1][x-1])
p := int32(z.ybr[y+0][x-1])
a := int32(z.ybr[y-1][x-1])
b := int32(z.ybr[y-1][x+0])
c := int32(z.ybr[y-1][x+1])
d := int32(z.ybr[y-1][x+2])
e := int32(z.ybr[y-1][x+3])
ab := uint8((a + b + 1) / 2)
bc := uint8((b + c + 1) / 2)
cd := uint8((c + d + 1) / 2)
de := uint8((d + e + 1) / 2)
rqp := uint8((r + 2*q + p + 2) / 4)
qpa := uint8((q + 2*p + a + 2) / 4)
pab := uint8((p + 2*a + b + 2) / 4)
abc := uint8((a + 2*b + c + 2) / 4)
bcd := uint8((b + 2*c + d + 2) / 4)
cde := uint8((c + 2*d + e + 2) / 4)
z.ybr[y+0][x+0] = ab
z.ybr[y+0][x+1] = bc
z.ybr[y+0][x+2] = cd
z.ybr[y+0][x+3] = de
z.ybr[y+1][x+0] = pab
z.ybr[y+1][x+1] = abc
z.ybr[y+1][x+2] = bcd
z.ybr[y+1][x+3] = cde
z.ybr[y+2][x+0] = qpa
z.ybr[y+2][x+1] = ab
z.ybr[y+2][x+2] = bc
z.ybr[y+2][x+3] = cd
z.ybr[y+3][x+0] = rqp
z.ybr[y+3][x+1] = pab
z.ybr[y+3][x+2] = abc
z.ybr[y+3][x+3] = bcd
}
func predFunc4LD(z *Decoder, y, x int) {
a := int32(z.ybr[y-1][x+0])
b := int32(z.ybr[y-1][x+1])
c := int32(z.ybr[y-1][x+2])
d := int32(z.ybr[y-1][x+3])
e := int32(z.ybr[y-1][x+4])
f := int32(z.ybr[y-1][x+5])
g := int32(z.ybr[y-1][x+6])
h := int32(z.ybr[y-1][x+7])
abc := uint8((a + 2*b + c + 2) / 4)
bcd := uint8((b + 2*c + d + 2) / 4)
cde := uint8((c + 2*d + e + 2) / 4)
def := uint8((d + 2*e + f + 2) / 4)
efg := uint8((e + 2*f + g + 2) / 4)
fgh := uint8((f + 2*g + h + 2) / 4)
ghh := uint8((g + 2*h + h + 2) / 4)
z.ybr[y+0][x+0] = abc
z.ybr[y+0][x+1] = bcd
z.ybr[y+0][x+2] = cde
z.ybr[y+0][x+3] = def
z.ybr[y+1][x+0] = bcd
z.ybr[y+1][x+1] = cde
z.ybr[y+1][x+2] = def
z.ybr[y+1][x+3] = efg
z.ybr[y+2][x+0] = cde
z.ybr[y+2][x+1] = def
z.ybr[y+2][x+2] = efg
z.ybr[y+2][x+3] = fgh
z.ybr[y+3][x+0] = def
z.ybr[y+3][x+1] = efg
z.ybr[y+3][x+2] = fgh
z.ybr[y+3][x+3] = ghh
}
func predFunc4VL(z *Decoder, y, x int) {
a := int32(z.ybr[y-1][x+0])
b := int32(z.ybr[y-1][x+1])
c := int32(z.ybr[y-1][x+2])
d := int32(z.ybr[y-1][x+3])
e := int32(z.ybr[y-1][x+4])
f := int32(z.ybr[y-1][x+5])
g := int32(z.ybr[y-1][x+6])
h := int32(z.ybr[y-1][x+7])
ab := uint8((a + b + 1) / 2)
bc := uint8((b + c + 1) / 2)
cd := uint8((c + d + 1) / 2)
de := uint8((d + e + 1) / 2)
abc := uint8((a + 2*b + c + 2) / 4)
bcd := uint8((b + 2*c + d + 2) / 4)
cde := uint8((c + 2*d + e + 2) / 4)
def := uint8((d + 2*e + f + 2) / 4)
efg := uint8((e + 2*f + g + 2) / 4)
fgh := uint8((f + 2*g + h + 2) / 4)
z.ybr[y+0][x+0] = ab
z.ybr[y+0][x+1] = bc
z.ybr[y+0][x+2] = cd
z.ybr[y+0][x+3] = de
z.ybr[y+1][x+0] = abc
z.ybr[y+1][x+1] = bcd
z.ybr[y+1][x+2] = cde
z.ybr[y+1][x+3] = def
z.ybr[y+2][x+0] = bc
z.ybr[y+2][x+1] = cd
z.ybr[y+2][x+2] = de
z.ybr[y+2][x+3] = efg
z.ybr[y+3][x+0] = bcd
z.ybr[y+3][x+1] = cde
z.ybr[y+3][x+2] = def
z.ybr[y+3][x+3] = fgh
}
func predFunc4HD(z *Decoder, y, x int) {
s := int32(z.ybr[y+3][x-1])
r := int32(z.ybr[y+2][x-1])
q := int32(z.ybr[y+1][x-1])
p := int32(z.ybr[y+0][x-1])
a := int32(z.ybr[y-1][x-1])
b := int32(z.ybr[y-1][x+0])
c := int32(z.ybr[y-1][x+1])
d := int32(z.ybr[y-1][x+2])
sr := uint8((s + r + 1) / 2)
rq := uint8((r + q + 1) / 2)
qp := uint8((q + p + 1) / 2)
pa := uint8((p + a + 1) / 2)
srq := uint8((s + 2*r + q + 2) / 4)
rqp := uint8((r + 2*q + p + 2) / 4)
qpa := uint8((q + 2*p + a + 2) / 4)
pab := uint8((p + 2*a + b + 2) / 4)
abc := uint8((a + 2*b + c + 2) / 4)
bcd := uint8((b + 2*c + d + 2) / 4)
z.ybr[y+0][x+0] = pa
z.ybr[y+0][x+1] = pab
z.ybr[y+0][x+2] = abc
z.ybr[y+0][x+3] = bcd
z.ybr[y+1][x+0] = qp
z.ybr[y+1][x+1] = qpa
z.ybr[y+1][x+2] = pa
z.ybr[y+1][x+3] = pab
z.ybr[y+2][x+0] = rq
z.ybr[y+2][x+1] = rqp
z.ybr[y+2][x+2] = qp
z.ybr[y+2][x+3] = qpa
z.ybr[y+3][x+0] = sr
z.ybr[y+3][x+1] = srq
z.ybr[y+3][x+2] = rq
z.ybr[y+3][x+3] = rqp
}
func predFunc4HU(z *Decoder, y, x int) {
s := int32(z.ybr[y+3][x-1])
r := int32(z.ybr[y+2][x-1])
q := int32(z.ybr[y+1][x-1])
p := int32(z.ybr[y+0][x-1])
pq := uint8((p + q + 1) / 2)
qr := uint8((q + r + 1) / 2)
rs := uint8((r + s + 1) / 2)
pqr := uint8((p + 2*q + r + 2) / 4)
qrs := uint8((q + 2*r + s + 2) / 4)
rss := uint8((r + 2*s + s + 2) / 4)
sss := uint8(s)
z.ybr[y+0][x+0] = pq
z.ybr[y+0][x+1] = pqr
z.ybr[y+0][x+2] = qr
z.ybr[y+0][x+3] = qrs
z.ybr[y+1][x+0] = qr
z.ybr[y+1][x+1] = qrs
z.ybr[y+1][x+2] = rs
z.ybr[y+1][x+3] = rss
z.ybr[y+2][x+0] = rs
z.ybr[y+2][x+1] = rss
z.ybr[y+2][x+2] = sss
z.ybr[y+2][x+3] = sss
z.ybr[y+3][x+0] = sss
z.ybr[y+3][x+1] = sss
z.ybr[y+3][x+2] = sss
z.ybr[y+3][x+3] = sss
}
func predFunc8DC(z *Decoder, y, x int) {
sum := uint32(8)
for i := 0; i < 8; i++ {
sum += uint32(z.ybr[y-1][x+i])
}
for j := 0; j < 8; j++ {
sum += uint32(z.ybr[y+j][x-1])
}
avg := uint8(sum / 16)
for j := 0; j < 8; j++ {
for i := 0; i < 8; i++ {
z.ybr[y+j][x+i] = avg
}
}
}
func predFunc8TM(z *Decoder, y, x int) {
delta0 := -int32(z.ybr[y-1][x-1])
for j := 0; j < 8; j++ {
delta1 := delta0 + int32(z.ybr[y+j][x-1])
for i := 0; i < 8; i++ {
delta2 := delta1 + int32(z.ybr[y-1][x+i])
z.ybr[y+j][x+i] = uint8(clip(delta2, 0, 255))
}
}
}
func predFunc8VE(z *Decoder, y, x int) {
for j := 0; j < 8; j++ {
for i := 0; i < 8; i++ {
z.ybr[y+j][x+i] = z.ybr[y-1][x+i]
}
}
}
func predFunc8HE(z *Decoder, y, x int) {
for j := 0; j < 8; j++ {
for i := 0; i < 8; i++ {
z.ybr[y+j][x+i] = z.ybr[y+j][x-1]
}
}
}
func predFunc8DCTop(z *Decoder, y, x int) {
sum := uint32(4)
for j := 0; j < 8; j++ {
sum += uint32(z.ybr[y+j][x-1])
}
avg := uint8(sum / 8)
for j := 0; j < 8; j++ {
for i := 0; i < 8; i++ {
z.ybr[y+j][x+i] = avg
}
}
}
func predFunc8DCLeft(z *Decoder, y, x int) {
sum := uint32(4)
for i := 0; i < 8; i++ {
sum += uint32(z.ybr[y-1][x+i])
}
avg := uint8(sum / 8)
for j := 0; j < 8; j++ {
for i := 0; i < 8; i++ {
z.ybr[y+j][x+i] = avg
}
}
}
func predFunc8DCTopLeft(z *Decoder, y, x int) {
for j := 0; j < 8; j++ {
for i := 0; i < 8; i++ {
z.ybr[y+j][x+i] = 0x80
}
}
}
func predFunc16DC(z *Decoder, y, x int) {
sum := uint32(16)
for i := 0; i < 16; i++ {
sum += uint32(z.ybr[y-1][x+i])
}
for j := 0; j < 16; j++ {
sum += uint32(z.ybr[y+j][x-1])
}
avg := uint8(sum / 32)
for j := 0; j < 16; j++ {
for i := 0; i < 16; i++ {
z.ybr[y+j][x+i] = avg
}
}
}
func predFunc16TM(z *Decoder, y, x int) {
delta0 := -int32(z.ybr[y-1][x-1])
for j := 0; j < 16; j++ {
delta1 := delta0 + int32(z.ybr[y+j][x-1])
for i := 0; i < 16; i++ {
delta2 := delta1 + int32(z.ybr[y-1][x+i])
z.ybr[y+j][x+i] = uint8(clip(delta2, 0, 255))
}
}
}
func predFunc16VE(z *Decoder, y, x int) {
for j := 0; j < 16; j++ {
for i := 0; i < 16; i++ {
z.ybr[y+j][x+i] = z.ybr[y-1][x+i]
}
}
}
func predFunc16HE(z *Decoder, y, x int) {
for j := 0; j < 16; j++ {
for i := 0; i < 16; i++ {
z.ybr[y+j][x+i] = z.ybr[y+j][x-1]
}
}
}
func predFunc16DCTop(z *Decoder, y, x int) {
sum := uint32(8)
for j := 0; j < 16; j++ {
sum += uint32(z.ybr[y+j][x-1])
}
avg := uint8(sum / 16)
for j := 0; j < 16; j++ {
for i := 0; i < 16; i++ {
z.ybr[y+j][x+i] = avg
}
}
}
func predFunc16DCLeft(z *Decoder, y, x int) {
sum := uint32(8)
for i := 0; i < 16; i++ {
sum += uint32(z.ybr[y-1][x+i])
}
avg := uint8(sum / 16)
for j := 0; j < 16; j++ {
for i := 0; i < 16; i++ {
z.ybr[y+j][x+i] = avg
}
}
}
func predFunc16DCTopLeft(z *Decoder, y, x int) {
for j := 0; j < 16; j++ {
for i := 0; i < 16; i++ {
z.ybr[y+j][x+i] = 0x80
}
}
}

98
vendor/golang.org/x/image/vp8/quant.go generated vendored Normal file
View File

@ -0,0 +1,98 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package vp8
// This file implements parsing the quantization factors.
// quant are DC/AC quantization factors.
type quant struct {
y1 [2]uint16
y2 [2]uint16
uv [2]uint16
}
// clip clips x to the range [min, max] inclusive.
func clip(x, min, max int32) int32 {
if x < min {
return min
}
if x > max {
return max
}
return x
}
// parseQuant parses the quantization factors, as specified in section 9.6.
func (d *Decoder) parseQuant() {
baseQ0 := d.fp.readUint(uniformProb, 7)
dqy1DC := d.fp.readOptionalInt(uniformProb, 4)
const dqy1AC = 0
dqy2DC := d.fp.readOptionalInt(uniformProb, 4)
dqy2AC := d.fp.readOptionalInt(uniformProb, 4)
dquvDC := d.fp.readOptionalInt(uniformProb, 4)
dquvAC := d.fp.readOptionalInt(uniformProb, 4)
for i := 0; i < nSegment; i++ {
q := int32(baseQ0)
if d.segmentHeader.useSegment {
if d.segmentHeader.relativeDelta {
q += int32(d.segmentHeader.quantizer[i])
} else {
q = int32(d.segmentHeader.quantizer[i])
}
}
d.quant[i].y1[0] = dequantTableDC[clip(q+dqy1DC, 0, 127)]
d.quant[i].y1[1] = dequantTableAC[clip(q+dqy1AC, 0, 127)]
d.quant[i].y2[0] = dequantTableDC[clip(q+dqy2DC, 0, 127)] * 2
d.quant[i].y2[1] = dequantTableAC[clip(q+dqy2AC, 0, 127)] * 155 / 100
if d.quant[i].y2[1] < 8 {
d.quant[i].y2[1] = 8
}
// The 117 is not a typo. The dequant_init function in the spec's Reference
// Decoder Source Code (http://tools.ietf.org/html/rfc6386#section-9.6 Page 145)
// says to clamp the LHS value at 132, which is equal to dequantTableDC[117].
d.quant[i].uv[0] = dequantTableDC[clip(q+dquvDC, 0, 117)]
d.quant[i].uv[1] = dequantTableAC[clip(q+dquvAC, 0, 127)]
}
}
// The dequantization tables are specified in section 14.1.
var (
dequantTableDC = [128]uint16{
4, 5, 6, 7, 8, 9, 10, 10,
11, 12, 13, 14, 15, 16, 17, 17,
18, 19, 20, 20, 21, 21, 22, 22,
23, 23, 24, 25, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36,
37, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89,
91, 93, 95, 96, 98, 100, 101, 102,
104, 106, 108, 110, 112, 114, 116, 118,
122, 124, 126, 128, 130, 132, 134, 136,
138, 140, 143, 145, 148, 151, 154, 157,
}
dequantTableAC = [128]uint16{
4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 60,
62, 64, 66, 68, 70, 72, 74, 76,
78, 80, 82, 84, 86, 88, 90, 92,
94, 96, 98, 100, 102, 104, 106, 108,
110, 112, 114, 116, 119, 122, 125, 128,
131, 134, 137, 140, 143, 146, 149, 152,
155, 158, 161, 164, 167, 170, 173, 177,
181, 185, 189, 193, 197, 201, 205, 209,
213, 217, 221, 225, 229, 234, 239, 245,
249, 254, 259, 264, 269, 274, 279, 284,
}
)

442
vendor/golang.org/x/image/vp8/reconstruct.go generated vendored Normal file
View File

@ -0,0 +1,442 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package vp8
// This file implements decoding DCT/WHT residual coefficients and
// reconstructing YCbCr data equal to predicted values plus residuals.
//
// There are 1*16*16 + 2*8*8 + 1*4*4 coefficients per macroblock:
// - 1*16*16 luma DCT coefficients,
// - 2*8*8 chroma DCT coefficients, and
// - 1*4*4 luma WHT coefficients.
// Coefficients are read in lots of 16, and the later coefficients in each lot
// are often zero.
//
// The YCbCr data consists of 1*16*16 luma values and 2*8*8 chroma values,
// plus previously decoded values along the top and left borders. The combined
// values are laid out as a [1+16+1+8][32]uint8 so that vertically adjacent
// samples are 32 bytes apart. In detail, the layout is:
//
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// . . . . . . . a b b b b b b b b b b b b b b b b c c c c . . . . 0
// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 1
// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 2
// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 3
// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y c c c c . . . . 4
// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 5
// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 6
// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 7
// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y c c c c . . . . 8
// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 9
// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 10
// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 11
// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y c c c c . . . . 12
// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 13
// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 14
// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 15
// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 16
// . . . . . . . e f f f f f f f f . . . . . . . g h h h h h h h h 17
// . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 18
// . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 19
// . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 20
// . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 21
// . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 22
// . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 23
// . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 24
// . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 25
//
// Y, B and R are the reconstructed luma (Y) and chroma (B, R) values.
// The Y values are predicted (either as one 16x16 region or 16 4x4 regions)
// based on the row above's Y values (some combination of {abc} or {dYC}) and
// the column left's Y values (either {ad} or {bY}). Similarly, B and R values
// are predicted on the row above and column left of their respective 8x8
// region: {efi} for B, {ghj} for R.
//
// For uppermost macroblocks (i.e. those with mby == 0), the {abcefgh} values
// are initialized to 0x81. Otherwise, they are copied from the bottom row of
// the macroblock above. The {c} values are then duplicated from row 0 to rows
// 4, 8 and 12 of the ybr workspace.
// Similarly, for leftmost macroblocks (i.e. those with mbx == 0), the {adeigj}
// values are initialized to 0x7f. Otherwise, they are copied from the right
// column of the macroblock to the left.
// For the top-left macroblock (with mby == 0 && mbx == 0), {aeg} is 0x81.
//
// When moving from one macroblock to the next horizontally, the {adeigj}
// values can simply be copied from the workspace to itself, shifted by 8 or
// 16 columns. When moving from one macroblock to the next vertically,
// filtering can occur and hence the row values have to be copied from the
// post-filtered image instead of the pre-filtered workspace.
const (
bCoeffBase = 1*16*16 + 0*8*8
rCoeffBase = 1*16*16 + 1*8*8
whtCoeffBase = 1*16*16 + 2*8*8
)
const (
ybrYX = 8
ybrYY = 1
ybrBX = 8
ybrBY = 18
ybrRX = 24
ybrRY = 18
)
// prepareYBR prepares the {abcdefghij} elements of ybr.
func (d *Decoder) prepareYBR(mbx, mby int) {
if mbx == 0 {
for y := 0; y < 17; y++ {
d.ybr[y][7] = 0x81
}
for y := 17; y < 26; y++ {
d.ybr[y][7] = 0x81
d.ybr[y][23] = 0x81
}
} else {
for y := 0; y < 17; y++ {
d.ybr[y][7] = d.ybr[y][7+16]
}
for y := 17; y < 26; y++ {
d.ybr[y][7] = d.ybr[y][15]
d.ybr[y][23] = d.ybr[y][31]
}
}
if mby == 0 {
for x := 7; x < 28; x++ {
d.ybr[0][x] = 0x7f
}
for x := 7; x < 16; x++ {
d.ybr[17][x] = 0x7f
}
for x := 23; x < 32; x++ {
d.ybr[17][x] = 0x7f
}
} else {
for i := 0; i < 16; i++ {
d.ybr[0][8+i] = d.img.Y[(16*mby-1)*d.img.YStride+16*mbx+i]
}
for i := 0; i < 8; i++ {
d.ybr[17][8+i] = d.img.Cb[(8*mby-1)*d.img.CStride+8*mbx+i]
}
for i := 0; i < 8; i++ {
d.ybr[17][24+i] = d.img.Cr[(8*mby-1)*d.img.CStride+8*mbx+i]
}
if mbx == d.mbw-1 {
for i := 16; i < 20; i++ {
d.ybr[0][8+i] = d.img.Y[(16*mby-1)*d.img.YStride+16*mbx+15]
}
} else {
for i := 16; i < 20; i++ {
d.ybr[0][8+i] = d.img.Y[(16*mby-1)*d.img.YStride+16*mbx+i]
}
}
}
for y := 4; y < 16; y += 4 {
d.ybr[y][24] = d.ybr[0][24]
d.ybr[y][25] = d.ybr[0][25]
d.ybr[y][26] = d.ybr[0][26]
d.ybr[y][27] = d.ybr[0][27]
}
}
// btou converts a bool to a 0/1 value.
func btou(b bool) uint8 {
if b {
return 1
}
return 0
}
// pack packs four 0/1 values into four bits of a uint32.
func pack(x [4]uint8, shift int) uint32 {
u := uint32(x[0])<<0 | uint32(x[1])<<1 | uint32(x[2])<<2 | uint32(x[3])<<3
return u << uint(shift)
}
// unpack unpacks four 0/1 values from a four-bit value.
var unpack = [16][4]uint8{
{0, 0, 0, 0},
{1, 0, 0, 0},
{0, 1, 0, 0},
{1, 1, 0, 0},
{0, 0, 1, 0},
{1, 0, 1, 0},
{0, 1, 1, 0},
{1, 1, 1, 0},
{0, 0, 0, 1},
{1, 0, 0, 1},
{0, 1, 0, 1},
{1, 1, 0, 1},
{0, 0, 1, 1},
{1, 0, 1, 1},
{0, 1, 1, 1},
{1, 1, 1, 1},
}
var (
// The mapping from 4x4 region position to band is specified in section 13.3.
bands = [17]uint8{0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 0}
// Category probabilties are specified in section 13.2.
// Decoding categories 1 and 2 are done inline.
cat3456 = [4][12]uint8{
{173, 148, 140, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{176, 155, 140, 135, 0, 0, 0, 0, 0, 0, 0, 0},
{180, 157, 141, 134, 130, 0, 0, 0, 0, 0, 0, 0},
{254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129, 0},
}
// The zigzag order is:
// 0 1 5 6
// 2 4 7 12
// 3 8 11 13
// 9 10 14 15
zigzag = [16]uint8{0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15}
)
// parseResiduals4 parses a 4x4 region of residual coefficients, as specified
// in section 13.3, and returns a 0/1 value indicating whether there was at
// least one non-zero coefficient.
// r is the partition to read bits from.
// plane and context describe which token probability table to use. context is
// either 0, 1 or 2, and equals how many of the macroblock left and macroblock
// above have non-zero coefficients.
// quant are the DC/AC quantization factors.
// skipFirstCoeff is whether the DC coefficient has already been parsed.
// coeffBase is the base index of d.coeff to write to.
func (d *Decoder) parseResiduals4(r *partition, plane int, context uint8, quant [2]uint16, skipFirstCoeff bool, coeffBase int) uint8 {
prob, n := &d.tokenProb[plane], 0
if skipFirstCoeff {
n = 1
}
p := prob[bands[n]][context]
if !r.readBit(p[0]) {
return 0
}
for n != 16 {
n++
if !r.readBit(p[1]) {
p = prob[bands[n]][0]
continue
}
var v uint32
if !r.readBit(p[2]) {
v = 1
p = prob[bands[n]][1]
} else {
if !r.readBit(p[3]) {
if !r.readBit(p[4]) {
v = 2
} else {
v = 3 + r.readUint(p[5], 1)
}
} else if !r.readBit(p[6]) {
if !r.readBit(p[7]) {
// Category 1.
v = 5 + r.readUint(159, 1)
} else {
// Category 2.
v = 7 + 2*r.readUint(165, 1) + r.readUint(145, 1)
}
} else {
// Categories 3, 4, 5 or 6.
b1 := r.readUint(p[8], 1)
b0 := r.readUint(p[9+b1], 1)
cat := 2*b1 + b0
tab := &cat3456[cat]
v = 0
for i := 0; tab[i] != 0; i++ {
v *= 2
v += r.readUint(tab[i], 1)
}
v += 3 + (8 << cat)
}
p = prob[bands[n]][2]
}
z := zigzag[n-1]
c := int32(v) * int32(quant[btou(z > 0)])
if r.readBit(uniformProb) {
c = -c
}
d.coeff[coeffBase+int(z)] = int16(c)
if n == 16 || !r.readBit(p[0]) {
return 1
}
}
return 1
}
// parseResiduals parses the residuals and returns whether inner loop filtering
// should be skipped for this macroblock.
func (d *Decoder) parseResiduals(mbx, mby int) (skip bool) {
partition := &d.op[mby&(d.nOP-1)]
plane := planeY1SansY2
quant := &d.quant[d.segment]
// Parse the DC coefficient of each 4x4 luma region.
if d.usePredY16 {
nz := d.parseResiduals4(partition, planeY2, d.leftMB.nzY16+d.upMB[mbx].nzY16, quant.y2, false, whtCoeffBase)
d.leftMB.nzY16 = nz
d.upMB[mbx].nzY16 = nz
d.inverseWHT16()
plane = planeY1WithY2
}
var (
nzDC, nzAC [4]uint8
nzDCMask, nzACMask uint32
coeffBase int
)
// Parse the luma coefficients.
lnz := unpack[d.leftMB.nzMask&0x0f]
unz := unpack[d.upMB[mbx].nzMask&0x0f]
for y := 0; y < 4; y++ {
nz := lnz[y]
for x := 0; x < 4; x++ {
nz = d.parseResiduals4(partition, plane, nz+unz[x], quant.y1, d.usePredY16, coeffBase)
unz[x] = nz
nzAC[x] = nz
nzDC[x] = btou(d.coeff[coeffBase] != 0)
coeffBase += 16
}
lnz[y] = nz
nzDCMask |= pack(nzDC, y*4)
nzACMask |= pack(nzAC, y*4)
}
lnzMask := pack(lnz, 0)
unzMask := pack(unz, 0)
// Parse the chroma coefficients.
lnz = unpack[d.leftMB.nzMask>>4]
unz = unpack[d.upMB[mbx].nzMask>>4]
for c := 0; c < 4; c += 2 {
for y := 0; y < 2; y++ {
nz := lnz[y+c]
for x := 0; x < 2; x++ {
nz = d.parseResiduals4(partition, planeUV, nz+unz[x+c], quant.uv, false, coeffBase)
unz[x+c] = nz
nzAC[y*2+x] = nz
nzDC[y*2+x] = btou(d.coeff[coeffBase] != 0)
coeffBase += 16
}
lnz[y+c] = nz
}
nzDCMask |= pack(nzDC, 16+c*2)
nzACMask |= pack(nzAC, 16+c*2)
}
lnzMask |= pack(lnz, 4)
unzMask |= pack(unz, 4)
// Save decoder state.
d.leftMB.nzMask = uint8(lnzMask)
d.upMB[mbx].nzMask = uint8(unzMask)
d.nzDCMask = nzDCMask
d.nzACMask = nzACMask
// Section 15.1 of the spec says that "Steps 2 and 4 [of the loop filter]
// are skipped... [if] there is no DCT coefficient coded for the whole
// macroblock."
return nzDCMask == 0 && nzACMask == 0
}
// reconstructMacroblock applies the predictor functions and adds the inverse-
// DCT transformed residuals to recover the YCbCr data.
func (d *Decoder) reconstructMacroblock(mbx, mby int) {
if d.usePredY16 {
p := checkTopLeftPred(mbx, mby, d.predY16)
predFunc16[p](d, 1, 8)
for j := 0; j < 4; j++ {
for i := 0; i < 4; i++ {
n := 4*j + i
y := 4*j + 1
x := 4*i + 8
mask := uint32(1) << uint(n)
if d.nzACMask&mask != 0 {
d.inverseDCT4(y, x, 16*n)
} else if d.nzDCMask&mask != 0 {
d.inverseDCT4DCOnly(y, x, 16*n)
}
}
}
} else {
for j := 0; j < 4; j++ {
for i := 0; i < 4; i++ {
n := 4*j + i
y := 4*j + 1
x := 4*i + 8
predFunc4[d.predY4[j][i]](d, y, x)
mask := uint32(1) << uint(n)
if d.nzACMask&mask != 0 {
d.inverseDCT4(y, x, 16*n)
} else if d.nzDCMask&mask != 0 {
d.inverseDCT4DCOnly(y, x, 16*n)
}
}
}
}
p := checkTopLeftPred(mbx, mby, d.predC8)
predFunc8[p](d, ybrBY, ybrBX)
if d.nzACMask&0x0f0000 != 0 {
d.inverseDCT8(ybrBY, ybrBX, bCoeffBase)
} else if d.nzDCMask&0x0f0000 != 0 {
d.inverseDCT8DCOnly(ybrBY, ybrBX, bCoeffBase)
}
predFunc8[p](d, ybrRY, ybrRX)
if d.nzACMask&0xf00000 != 0 {
d.inverseDCT8(ybrRY, ybrRX, rCoeffBase)
} else if d.nzDCMask&0xf00000 != 0 {
d.inverseDCT8DCOnly(ybrRY, ybrRX, rCoeffBase)
}
}
// reconstruct reconstructs one macroblock and returns whether inner loop
// filtering should be skipped for it.
func (d *Decoder) reconstruct(mbx, mby int) (skip bool) {
if d.segmentHeader.updateMap {
if !d.fp.readBit(d.segmentHeader.prob[0]) {
d.segment = int(d.fp.readUint(d.segmentHeader.prob[1], 1))
} else {
d.segment = int(d.fp.readUint(d.segmentHeader.prob[2], 1)) + 2
}
}
if d.useSkipProb {
skip = d.fp.readBit(d.skipProb)
}
// Prepare the workspace.
for i := range d.coeff {
d.coeff[i] = 0
}
d.prepareYBR(mbx, mby)
// Parse the predictor modes.
d.usePredY16 = d.fp.readBit(145)
if d.usePredY16 {
d.parsePredModeY16(mbx)
} else {
d.parsePredModeY4(mbx)
}
d.parsePredModeC8()
// Parse the residuals.
if !skip {
skip = d.parseResiduals(mbx, mby)
} else {
if d.usePredY16 {
d.leftMB.nzY16 = 0
d.upMB[mbx].nzY16 = 0
}
d.leftMB.nzMask = 0
d.upMB[mbx].nzMask = 0
d.nzDCMask = 0
d.nzACMask = 0
}
// Reconstruct the YCbCr data and copy it to the image.
d.reconstructMacroblock(mbx, mby)
for i, y := (mby*d.img.YStride+mbx)*16, 0; y < 16; i, y = i+d.img.YStride, y+1 {
copy(d.img.Y[i:i+16], d.ybr[ybrYY+y][ybrYX:ybrYX+16])
}
for i, y := (mby*d.img.CStride+mbx)*8, 0; y < 8; i, y = i+d.img.CStride, y+1 {
copy(d.img.Cb[i:i+8], d.ybr[ybrBY+y][ybrBX:ybrBX+8])
copy(d.img.Cr[i:i+8], d.ybr[ybrRY+y][ybrRX:ybrRX+8])
}
return skip
}

381
vendor/golang.org/x/image/vp8/token.go generated vendored Normal file
View File

@ -0,0 +1,381 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package vp8
// This file contains token probabilities for decoding DCT/WHT coefficients, as
// specified in chapter 13.
func (d *Decoder) parseTokenProb() {
for i := range d.tokenProb {
for j := range d.tokenProb[i] {
for k := range d.tokenProb[i][j] {
for l := range d.tokenProb[i][j][k] {
if d.fp.readBit(tokenProbUpdateProb[i][j][k][l]) {
d.tokenProb[i][j][k][l] = uint8(d.fp.readUint(uniformProb, 8))
}
}
}
}
}
}
// The plane enumeration is specified in section 13.3.
const (
planeY1WithY2 = iota
planeY2
planeUV
planeY1SansY2
nPlane
)
const (
nBand = 8
nContext = 3
nProb = 11
)
// Token probability update probabilities are specified in section 13.4.
var tokenProbUpdateProb = [nPlane][nBand][nContext][nProb]uint8{
{
{
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{176, 246, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{223, 241, 252, 255, 255, 255, 255, 255, 255, 255, 255},
{249, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 244, 252, 255, 255, 255, 255, 255, 255, 255, 255},
{234, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 246, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{239, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{251, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{251, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 254, 253, 255, 254, 255, 255, 255, 255, 255, 255},
{250, 255, 254, 255, 254, 255, 255, 255, 255, 255, 255},
{254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
},
},
{
{
{217, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{225, 252, 241, 253, 255, 255, 254, 255, 255, 255, 255},
{234, 250, 241, 250, 253, 255, 253, 254, 255, 255, 255},
},
{
{255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{223, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{238, 253, 254, 254, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{249, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 253, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{247, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{252, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255},
{250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
},
},
{
{
{186, 251, 250, 255, 255, 255, 255, 255, 255, 255, 255},
{234, 251, 244, 254, 255, 255, 255, 255, 255, 255, 255},
{251, 251, 243, 253, 254, 255, 254, 255, 255, 255, 255},
},
{
{255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{236, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{251, 253, 253, 254, 254, 255, 255, 255, 255, 255, 255},
},
{
{255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
},
},
{
{
{248, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{250, 254, 252, 254, 255, 255, 255, 255, 255, 255, 255},
{248, 254, 249, 253, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255},
{246, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255},
{252, 254, 251, 254, 254, 255, 255, 255, 255, 255, 255},
},
{
{255, 254, 252, 255, 255, 255, 255, 255, 255, 255, 255},
{248, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255},
{253, 255, 254, 254, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{245, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{253, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 251, 253, 255, 255, 255, 255, 255, 255, 255, 255},
{252, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 252, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{249, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 255, 253, 255, 255, 255, 255, 255, 255, 255, 255},
{250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
},
{
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
},
},
}
// Default token probabilities are specified in section 13.5.
var defaultTokenProb = [nPlane][nBand][nContext][nProb]uint8{
{
{
{128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},
{128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},
{128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},
},
{
{253, 136, 254, 255, 228, 219, 128, 128, 128, 128, 128},
{189, 129, 242, 255, 227, 213, 255, 219, 128, 128, 128},
{106, 126, 227, 252, 214, 209, 255, 255, 128, 128, 128},
},
{
{1, 98, 248, 255, 236, 226, 255, 255, 128, 128, 128},
{181, 133, 238, 254, 221, 234, 255, 154, 128, 128, 128},
{78, 134, 202, 247, 198, 180, 255, 219, 128, 128, 128},
},
{
{1, 185, 249, 255, 243, 255, 128, 128, 128, 128, 128},
{184, 150, 247, 255, 236, 224, 128, 128, 128, 128, 128},
{77, 110, 216, 255, 236, 230, 128, 128, 128, 128, 128},
},
{
{1, 101, 251, 255, 241, 255, 128, 128, 128, 128, 128},
{170, 139, 241, 252, 236, 209, 255, 255, 128, 128, 128},
{37, 116, 196, 243, 228, 255, 255, 255, 128, 128, 128},
},
{
{1, 204, 254, 255, 245, 255, 128, 128, 128, 128, 128},
{207, 160, 250, 255, 238, 128, 128, 128, 128, 128, 128},
{102, 103, 231, 255, 211, 171, 128, 128, 128, 128, 128},
},
{
{1, 152, 252, 255, 240, 255, 128, 128, 128, 128, 128},
{177, 135, 243, 255, 234, 225, 128, 128, 128, 128, 128},
{80, 129, 211, 255, 194, 224, 128, 128, 128, 128, 128},
},
{
{1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},
{246, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},
{255, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},
},
},
{
{
{198, 35, 237, 223, 193, 187, 162, 160, 145, 155, 62},
{131, 45, 198, 221, 172, 176, 220, 157, 252, 221, 1},
{68, 47, 146, 208, 149, 167, 221, 162, 255, 223, 128},
},
{
{1, 149, 241, 255, 221, 224, 255, 255, 128, 128, 128},
{184, 141, 234, 253, 222, 220, 255, 199, 128, 128, 128},
{81, 99, 181, 242, 176, 190, 249, 202, 255, 255, 128},
},
{
{1, 129, 232, 253, 214, 197, 242, 196, 255, 255, 128},
{99, 121, 210, 250, 201, 198, 255, 202, 128, 128, 128},
{23, 91, 163, 242, 170, 187, 247, 210, 255, 255, 128},
},
{
{1, 200, 246, 255, 234, 255, 128, 128, 128, 128, 128},
{109, 178, 241, 255, 231, 245, 255, 255, 128, 128, 128},
{44, 130, 201, 253, 205, 192, 255, 255, 128, 128, 128},
},
{
{1, 132, 239, 251, 219, 209, 255, 165, 128, 128, 128},
{94, 136, 225, 251, 218, 190, 255, 255, 128, 128, 128},
{22, 100, 174, 245, 186, 161, 255, 199, 128, 128, 128},
},
{
{1, 182, 249, 255, 232, 235, 128, 128, 128, 128, 128},
{124, 143, 241, 255, 227, 234, 128, 128, 128, 128, 128},
{35, 77, 181, 251, 193, 211, 255, 205, 128, 128, 128},
},
{
{1, 157, 247, 255, 236, 231, 255, 255, 128, 128, 128},
{121, 141, 235, 255, 225, 227, 255, 255, 128, 128, 128},
{45, 99, 188, 251, 195, 217, 255, 224, 128, 128, 128},
},
{
{1, 1, 251, 255, 213, 255, 128, 128, 128, 128, 128},
{203, 1, 248, 255, 255, 128, 128, 128, 128, 128, 128},
{137, 1, 177, 255, 224, 255, 128, 128, 128, 128, 128},
},
},
{
{
{253, 9, 248, 251, 207, 208, 255, 192, 128, 128, 128},
{175, 13, 224, 243, 193, 185, 249, 198, 255, 255, 128},
{73, 17, 171, 221, 161, 179, 236, 167, 255, 234, 128},
},
{
{1, 95, 247, 253, 212, 183, 255, 255, 128, 128, 128},
{239, 90, 244, 250, 211, 209, 255, 255, 128, 128, 128},
{155, 77, 195, 248, 188, 195, 255, 255, 128, 128, 128},
},
{
{1, 24, 239, 251, 218, 219, 255, 205, 128, 128, 128},
{201, 51, 219, 255, 196, 186, 128, 128, 128, 128, 128},
{69, 46, 190, 239, 201, 218, 255, 228, 128, 128, 128},
},
{
{1, 191, 251, 255, 255, 128, 128, 128, 128, 128, 128},
{223, 165, 249, 255, 213, 255, 128, 128, 128, 128, 128},
{141, 124, 248, 255, 255, 128, 128, 128, 128, 128, 128},
},
{
{1, 16, 248, 255, 255, 128, 128, 128, 128, 128, 128},
{190, 36, 230, 255, 236, 255, 128, 128, 128, 128, 128},
{149, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},
},
{
{1, 226, 255, 128, 128, 128, 128, 128, 128, 128, 128},
{247, 192, 255, 128, 128, 128, 128, 128, 128, 128, 128},
{240, 128, 255, 128, 128, 128, 128, 128, 128, 128, 128},
},
{
{1, 134, 252, 255, 255, 128, 128, 128, 128, 128, 128},
{213, 62, 250, 255, 255, 128, 128, 128, 128, 128, 128},
{55, 93, 255, 128, 128, 128, 128, 128, 128, 128, 128},
},
{
{128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},
{128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},
{128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},
},
},
{
{
{202, 24, 213, 235, 186, 191, 220, 160, 240, 175, 255},
{126, 38, 182, 232, 169, 184, 228, 174, 255, 187, 128},
{61, 46, 138, 219, 151, 178, 240, 170, 255, 216, 128},
},
{
{1, 112, 230, 250, 199, 191, 247, 159, 255, 255, 128},
{166, 109, 228, 252, 211, 215, 255, 174, 128, 128, 128},
{39, 77, 162, 232, 172, 180, 245, 178, 255, 255, 128},
},
{
{1, 52, 220, 246, 198, 199, 249, 220, 255, 255, 128},
{124, 74, 191, 243, 183, 193, 250, 221, 255, 255, 128},
{24, 71, 130, 219, 154, 170, 243, 182, 255, 255, 128},
},
{
{1, 182, 225, 249, 219, 240, 255, 224, 128, 128, 128},
{149, 150, 226, 252, 216, 205, 255, 171, 128, 128, 128},
{28, 108, 170, 242, 183, 194, 254, 223, 255, 255, 128},
},
{
{1, 81, 230, 252, 204, 203, 255, 192, 128, 128, 128},
{123, 102, 209, 247, 188, 196, 255, 233, 128, 128, 128},
{20, 95, 153, 243, 164, 173, 255, 203, 128, 128, 128},
},
{
{1, 222, 248, 255, 216, 213, 128, 128, 128, 128, 128},
{168, 175, 246, 252, 235, 205, 255, 255, 128, 128, 128},
{47, 116, 215, 255, 211, 212, 255, 255, 128, 128, 128},
},
{
{1, 121, 236, 253, 212, 214, 255, 255, 128, 128, 128},
{141, 84, 213, 252, 201, 202, 255, 219, 128, 128, 128},
{42, 80, 160, 240, 162, 185, 255, 205, 128, 128, 128},
},
{
{1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},
{244, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},
{238, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128},
},
},
}

603
vendor/golang.org/x/image/vp8l/decode.go generated vendored Normal file
View File

@ -0,0 +1,603 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package vp8l implements a decoder for the VP8L lossless image format.
//
// The VP8L specification is at:
// https://developers.google.com/speed/webp/docs/riff_container
package vp8l // import "golang.org/x/image/vp8l"
import (
"bufio"
"errors"
"image"
"image/color"
"io"
)
var (
errInvalidCodeLengths = errors.New("vp8l: invalid code lengths")
errInvalidHuffmanTree = errors.New("vp8l: invalid Huffman tree")
)
// colorCacheMultiplier is the multiplier used for the color cache hash
// function, specified in section 4.2.3.
const colorCacheMultiplier = 0x1e35a7bd
// distanceMapTable is the look-up table for distanceMap.
var distanceMapTable = [120]uint8{
0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70,
}
// distanceMap maps a LZ77 backwards reference distance to a two-dimensional
// pixel offset, specified in section 4.2.2.
func distanceMap(w int32, code uint32) int32 {
if int32(code) > int32(len(distanceMapTable)) {
return int32(code) - int32(len(distanceMapTable))
}
distCode := int32(distanceMapTable[code-1])
yOffset := distCode >> 4
xOffset := 8 - distCode&0xf
if d := yOffset*w + xOffset; d >= 1 {
return d
}
return 1
}
// decoder holds the bit-stream for a VP8L image.
type decoder struct {
r io.ByteReader
bits uint32
nBits uint32
}
// read reads the next n bits from the decoder's bit-stream.
func (d *decoder) read(n uint32) (uint32, error) {
for d.nBits < n {
c, err := d.r.ReadByte()
if err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
return 0, err
}
d.bits |= uint32(c) << d.nBits
d.nBits += 8
}
u := d.bits & (1<<n - 1)
d.bits >>= n
d.nBits -= n
return u, nil
}
// decodeTransform decodes the next transform and the width of the image after
// transformation (or equivalently, before inverse transformation), specified
// in section 3.
func (d *decoder) decodeTransform(w int32, h int32) (t transform, newWidth int32, err error) {
t.oldWidth = w
t.transformType, err = d.read(2)
if err != nil {
return transform{}, 0, err
}
switch t.transformType {
case transformTypePredictor, transformTypeCrossColor:
t.bits, err = d.read(3)
if err != nil {
return transform{}, 0, err
}
t.bits += 2
t.pix, err = d.decodePix(nTiles(w, t.bits), nTiles(h, t.bits), 0, false)
if err != nil {
return transform{}, 0, err
}
case transformTypeSubtractGreen:
// No-op.
case transformTypeColorIndexing:
nColors, err := d.read(8)
if err != nil {
return transform{}, 0, err
}
nColors++
t.bits = 0
switch {
case nColors <= 2:
t.bits = 3
case nColors <= 4:
t.bits = 2
case nColors <= 16:
t.bits = 1
}
w = nTiles(w, t.bits)
pix, err := d.decodePix(int32(nColors), 1, 4*256, false)
if err != nil {
return transform{}, 0, err
}
for p := 4; p < len(pix); p += 4 {
pix[p+0] += pix[p-4]
pix[p+1] += pix[p-3]
pix[p+2] += pix[p-2]
pix[p+3] += pix[p-1]
}
// The spec says that "if the index is equal or larger than color_table_size,
// the argb color value should be set to 0x00000000 (transparent black)."
// We re-slice up to 256 4-byte pixels.
t.pix = pix[:4*256]
}
return t, w, nil
}
// repeatsCodeLength is the minimum code length for repeated codes.
const repeatsCodeLength = 16
// These magic numbers are specified at the end of section 5.2.2.
// The 3-length arrays apply to code lengths >= repeatsCodeLength.
var (
codeLengthCodeOrder = [19]uint8{
17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
}
repeatBits = [3]uint8{2, 3, 7}
repeatOffsets = [3]uint8{3, 3, 11}
)
// decodeCodeLengths decodes a Huffman tree's code lengths which are themselves
// encoded via a Huffman tree, specified in section 5.2.2.
func (d *decoder) decodeCodeLengths(dst []uint32, codeLengthCodeLengths []uint32) error {
h := hTree{}
if err := h.build(codeLengthCodeLengths); err != nil {
return err
}
maxSymbol := len(dst)
useLength, err := d.read(1)
if err != nil {
return err
}
if useLength != 0 {
n, err := d.read(3)
if err != nil {
return err
}
n = 2 + 2*n
ms, err := d.read(n)
if err != nil {
return err
}
maxSymbol = int(ms) + 2
if maxSymbol > len(dst) {
return errInvalidCodeLengths
}
}
// The spec says that "if code 16 [meaning repeat] is used before
// a non-zero value has been emitted, a value of 8 is repeated."
prevCodeLength := uint32(8)
for symbol := 0; symbol < len(dst); {
if maxSymbol == 0 {
break
}
maxSymbol--
codeLength, err := h.next(d)
if err != nil {
return err
}
if codeLength < repeatsCodeLength {
dst[symbol] = codeLength
symbol++
if codeLength != 0 {
prevCodeLength = codeLength
}
continue
}
repeat, err := d.read(uint32(repeatBits[codeLength-repeatsCodeLength]))
if err != nil {
return err
}
repeat += uint32(repeatOffsets[codeLength-repeatsCodeLength])
if symbol+int(repeat) > len(dst) {
return errInvalidCodeLengths
}
// A code length of 16 repeats the previous non-zero code.
// A code length of 17 or 18 repeats zeroes.
cl := uint32(0)
if codeLength == 16 {
cl = prevCodeLength
}
for ; repeat > 0; repeat-- {
dst[symbol] = cl
symbol++
}
}
return nil
}
// decodeHuffmanTree decodes a Huffman tree into h.
func (d *decoder) decodeHuffmanTree(h *hTree, alphabetSize uint32) error {
useSimple, err := d.read(1)
if err != nil {
return err
}
if useSimple != 0 {
nSymbols, err := d.read(1)
if err != nil {
return err
}
nSymbols++
firstSymbolLengthCode, err := d.read(1)
if err != nil {
return err
}
firstSymbolLengthCode = 7*firstSymbolLengthCode + 1
var symbols [2]uint32
symbols[0], err = d.read(firstSymbolLengthCode)
if err != nil {
return err
}
if nSymbols == 2 {
symbols[1], err = d.read(8)
if err != nil {
return err
}
}
return h.buildSimple(nSymbols, symbols, alphabetSize)
}
nCodes, err := d.read(4)
if err != nil {
return err
}
nCodes += 4
if int(nCodes) > len(codeLengthCodeOrder) {
return errInvalidHuffmanTree
}
codeLengthCodeLengths := [len(codeLengthCodeOrder)]uint32{}
for i := uint32(0); i < nCodes; i++ {
codeLengthCodeLengths[codeLengthCodeOrder[i]], err = d.read(3)
if err != nil {
return err
}
}
codeLengths := make([]uint32, alphabetSize)
if err = d.decodeCodeLengths(codeLengths, codeLengthCodeLengths[:]); err != nil {
return err
}
return h.build(codeLengths)
}
const (
huffGreen = 0
huffRed = 1
huffBlue = 2
huffAlpha = 3
huffDistance = 4
nHuff = 5
)
// hGroup is an array of 5 Huffman trees.
type hGroup [nHuff]hTree
// decodeHuffmanGroups decodes the one or more hGroups used to decode the pixel
// data. If one hGroup is used for the entire image, then hPix and hBits will
// be zero. If more than one hGroup is used, then hPix contains the meta-image
// that maps tiles to hGroup index, and hBits contains the log-2 tile size.
func (d *decoder) decodeHuffmanGroups(w int32, h int32, topLevel bool, ccBits uint32) (
hGroups []hGroup, hPix []byte, hBits uint32, err error) {
maxHGroupIndex := 0
if topLevel {
useMeta, err := d.read(1)
if err != nil {
return nil, nil, 0, err
}
if useMeta != 0 {
hBits, err = d.read(3)
if err != nil {
return nil, nil, 0, err
}
hBits += 2
hPix, err = d.decodePix(nTiles(w, hBits), nTiles(h, hBits), 0, false)
if err != nil {
return nil, nil, 0, err
}
for p := 0; p < len(hPix); p += 4 {
i := int(hPix[p])<<8 | int(hPix[p+1])
if maxHGroupIndex < i {
maxHGroupIndex = i
}
}
}
}
hGroups = make([]hGroup, maxHGroupIndex+1)
for i := range hGroups {
for j, alphabetSize := range alphabetSizes {
if j == 0 && ccBits > 0 {
alphabetSize += 1 << ccBits
}
if err := d.decodeHuffmanTree(&hGroups[i][j], alphabetSize); err != nil {
return nil, nil, 0, err
}
}
}
return hGroups, hPix, hBits, nil
}
const (
nLiteralCodes = 256
nLengthCodes = 24
nDistanceCodes = 40
)
var alphabetSizes = [nHuff]uint32{
nLiteralCodes + nLengthCodes,
nLiteralCodes,
nLiteralCodes,
nLiteralCodes,
nDistanceCodes,
}
// decodePix decodes pixel data, specified in section 5.2.2.
func (d *decoder) decodePix(w int32, h int32, minCap int32, topLevel bool) ([]byte, error) {
// Decode the color cache parameters.
ccBits, ccShift, ccEntries := uint32(0), uint32(0), ([]uint32)(nil)
useColorCache, err := d.read(1)
if err != nil {
return nil, err
}
if useColorCache != 0 {
ccBits, err = d.read(4)
if err != nil {
return nil, err
}
if ccBits < 1 || 11 < ccBits {
return nil, errors.New("vp8l: invalid color cache parameters")
}
ccShift = 32 - ccBits
ccEntries = make([]uint32, 1<<ccBits)
}
// Decode the Huffman groups.
hGroups, hPix, hBits, err := d.decodeHuffmanGroups(w, h, topLevel, ccBits)
if err != nil {
return nil, err
}
hMask, tilesPerRow := int32(0), int32(0)
if hBits != 0 {
hMask, tilesPerRow = 1<<hBits-1, nTiles(w, hBits)
}
// Decode the pixels.
if minCap < 4*w*h {
minCap = 4 * w * h
}
pix := make([]byte, 4*w*h, minCap)
p, cachedP := 0, 0
x, y := int32(0), int32(0)
hg, lookupHG := &hGroups[0], hMask != 0
for p < len(pix) {
if lookupHG {
i := 4 * (tilesPerRow*(y>>hBits) + (x >> hBits))
hg = &hGroups[uint32(hPix[i])<<8|uint32(hPix[i+1])]
}
green, err := hg[huffGreen].next(d)
if err != nil {
return nil, err
}
switch {
case green < nLiteralCodes:
// We have a literal pixel.
red, err := hg[huffRed].next(d)
if err != nil {
return nil, err
}
blue, err := hg[huffBlue].next(d)
if err != nil {
return nil, err
}
alpha, err := hg[huffAlpha].next(d)
if err != nil {
return nil, err
}
pix[p+0] = uint8(red)
pix[p+1] = uint8(green)
pix[p+2] = uint8(blue)
pix[p+3] = uint8(alpha)
p += 4
x++
if x == w {
x, y = 0, y+1
}
lookupHG = hMask != 0 && x&hMask == 0
case green < nLiteralCodes+nLengthCodes:
// We have a LZ77 backwards reference.
length, err := d.lz77Param(green - nLiteralCodes)
if err != nil {
return nil, err
}
distSym, err := hg[huffDistance].next(d)
if err != nil {
return nil, err
}
distCode, err := d.lz77Param(distSym)
if err != nil {
return nil, err
}
dist := distanceMap(w, distCode)
pEnd := p + 4*int(length)
q := p - 4*int(dist)
qEnd := pEnd - 4*int(dist)
if p < 0 || len(pix) < pEnd || q < 0 || len(pix) < qEnd {
return nil, errors.New("vp8l: invalid LZ77 parameters")
}
for ; p < pEnd; p, q = p+1, q+1 {
pix[p] = pix[q]
}
x += int32(length)
for x >= w {
x, y = x-w, y+1
}
lookupHG = hMask != 0
default:
// We have a color cache lookup. First, insert previous pixels
// into the cache. Note that VP8L assumes ARGB order, but the
// Go image.RGBA type is in RGBA order.
for ; cachedP < p; cachedP += 4 {
argb := uint32(pix[cachedP+0])<<16 |
uint32(pix[cachedP+1])<<8 |
uint32(pix[cachedP+2])<<0 |
uint32(pix[cachedP+3])<<24
ccEntries[(argb*colorCacheMultiplier)>>ccShift] = argb
}
green -= nLiteralCodes + nLengthCodes
if int(green) >= len(ccEntries) {
return nil, errors.New("vp8l: invalid color cache index")
}
argb := ccEntries[green]
pix[p+0] = uint8(argb >> 16)
pix[p+1] = uint8(argb >> 8)
pix[p+2] = uint8(argb >> 0)
pix[p+3] = uint8(argb >> 24)
p += 4
x++
if x == w {
x, y = 0, y+1
}
lookupHG = hMask != 0 && x&hMask == 0
}
}
return pix, nil
}
// lz77Param returns the next LZ77 parameter: a length or a distance, specified
// in section 4.2.2.
func (d *decoder) lz77Param(symbol uint32) (uint32, error) {
if symbol < 4 {
return symbol + 1, nil
}
extraBits := (symbol - 2) >> 1
offset := (2 + symbol&1) << extraBits
n, err := d.read(extraBits)
if err != nil {
return 0, err
}
return offset + n + 1, nil
}
// decodeHeader decodes the VP8L header from r.
func decodeHeader(r io.Reader) (d *decoder, w int32, h int32, err error) {
rr, ok := r.(io.ByteReader)
if !ok {
rr = bufio.NewReader(r)
}
d = &decoder{r: rr}
magic, err := d.read(8)
if err != nil {
return nil, 0, 0, err
}
if magic != 0x2f {
return nil, 0, 0, errors.New("vp8l: invalid header")
}
width, err := d.read(14)
if err != nil {
return nil, 0, 0, err
}
width++
height, err := d.read(14)
if err != nil {
return nil, 0, 0, err
}
height++
_, err = d.read(1) // Read and ignore the hasAlpha hint.
if err != nil {
return nil, 0, 0, err
}
version, err := d.read(3)
if err != nil {
return nil, 0, 0, err
}
if version != 0 {
return nil, 0, 0, errors.New("vp8l: invalid version")
}
return d, int32(width), int32(height), nil
}
// DecodeConfig decodes the color model and dimensions of a VP8L image from r.
func DecodeConfig(r io.Reader) (image.Config, error) {
_, w, h, err := decodeHeader(r)
if err != nil {
return image.Config{}, err
}
return image.Config{
ColorModel: color.NRGBAModel,
Width: int(w),
Height: int(h),
}, nil
}
// Decode decodes a VP8L image from r.
func Decode(r io.Reader) (image.Image, error) {
d, w, h, err := decodeHeader(r)
if err != nil {
return nil, err
}
// Decode the transforms.
var (
nTransforms int
transforms [nTransformTypes]transform
transformsSeen [nTransformTypes]bool
originalW = w
)
for {
more, err := d.read(1)
if err != nil {
return nil, err
}
if more == 0 {
break
}
var t transform
t, w, err = d.decodeTransform(w, h)
if err != nil {
return nil, err
}
if transformsSeen[t.transformType] {
return nil, errors.New("vp8l: repeated transform")
}
transformsSeen[t.transformType] = true
transforms[nTransforms] = t
nTransforms++
}
// Decode the transformed pixels.
pix, err := d.decodePix(w, h, 0, true)
if err != nil {
return nil, err
}
// Apply the inverse transformations.
for i := nTransforms - 1; i >= 0; i-- {
t := &transforms[i]
pix = inverseTransforms[t.transformType](t, pix, h)
}
return &image.NRGBA{
Pix: pix,
Stride: 4 * int(originalW),
Rect: image.Rect(0, 0, int(originalW), int(h)),
}, nil
}

245
vendor/golang.org/x/image/vp8l/huffman.go generated vendored Normal file
View File

@ -0,0 +1,245 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package vp8l
import (
"io"
)
// reverseBits reverses the bits in a byte.
var reverseBits = [256]uint8{
0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
}
// hNode is a node in a Huffman tree.
type hNode struct {
// symbol is the symbol held by this node.
symbol uint32
// children, if positive, is the hTree.nodes index of the first of
// this node's two children. Zero means an uninitialized node,
// and -1 means a leaf node.
children int32
}
const leafNode = -1
// lutSize is the log-2 size of an hTree's look-up table.
const lutSize, lutMask = 7, 1<<7 - 1
// hTree is a Huffman tree.
type hTree struct {
// nodes are the nodes of the Huffman tree. During construction,
// len(nodes) grows from 1 up to cap(nodes) by steps of two.
// After construction, len(nodes) == cap(nodes), and both equal
// 2*theNumberOfSymbols - 1.
nodes []hNode
// lut is a look-up table for walking the nodes. The x in lut[x] is
// the next lutSize bits in the bit-stream. The low 8 bits of lut[x]
// equals 1 plus the number of bits in the next code, or 0 if the
// next code requires more than lutSize bits. The high 24 bits are:
// - the symbol, if the code requires lutSize or fewer bits, or
// - the hTree.nodes index to start the tree traversal from, if
// the next code requires more than lutSize bits.
lut [1 << lutSize]uint32
}
// insert inserts into the hTree a symbol whose encoding is the least
// significant codeLength bits of code.
func (h *hTree) insert(symbol uint32, code uint32, codeLength uint32) error {
if symbol > 0xffff || codeLength > 0xfe {
return errInvalidHuffmanTree
}
baseCode := uint32(0)
if codeLength > lutSize {
baseCode = uint32(reverseBits[(code>>(codeLength-lutSize))&0xff]) >> (8 - lutSize)
} else {
baseCode = uint32(reverseBits[code&0xff]) >> (8 - codeLength)
for i := 0; i < 1<<(lutSize-codeLength); i++ {
h.lut[baseCode|uint32(i)<<codeLength] = symbol<<8 | (codeLength + 1)
}
}
n := uint32(0)
for jump := lutSize; codeLength > 0; {
codeLength--
if int(n) > len(h.nodes) {
return errInvalidHuffmanTree
}
switch h.nodes[n].children {
case leafNode:
return errInvalidHuffmanTree
case 0:
if len(h.nodes) == cap(h.nodes) {
return errInvalidHuffmanTree
}
// Create two empty child nodes.
h.nodes[n].children = int32(len(h.nodes))
h.nodes = h.nodes[:len(h.nodes)+2]
}
n = uint32(h.nodes[n].children) + 1&(code>>codeLength)
jump--
if jump == 0 && h.lut[baseCode] == 0 {
h.lut[baseCode] = n << 8
}
}
switch h.nodes[n].children {
case leafNode:
// No-op.
case 0:
// Turn the uninitialized node into a leaf.
h.nodes[n].children = leafNode
default:
return errInvalidHuffmanTree
}
h.nodes[n].symbol = symbol
return nil
}
// codeLengthsToCodes returns the canonical Huffman codes implied by the
// sequence of code lengths.
func codeLengthsToCodes(codeLengths []uint32) ([]uint32, error) {
maxCodeLength := uint32(0)
for _, cl := range codeLengths {
if maxCodeLength < cl {
maxCodeLength = cl
}
}
const maxAllowedCodeLength = 15
if len(codeLengths) == 0 || maxCodeLength > maxAllowedCodeLength {
return nil, errInvalidHuffmanTree
}
histogram := [maxAllowedCodeLength + 1]uint32{}
for _, cl := range codeLengths {
histogram[cl]++
}
currCode, nextCodes := uint32(0), [maxAllowedCodeLength + 1]uint32{}
for cl := 1; cl < len(nextCodes); cl++ {
currCode = (currCode + histogram[cl-1]) << 1
nextCodes[cl] = currCode
}
codes := make([]uint32, len(codeLengths))
for symbol, cl := range codeLengths {
if cl > 0 {
codes[symbol] = nextCodes[cl]
nextCodes[cl]++
}
}
return codes, nil
}
// build builds a canonical Huffman tree from the given code lengths.
func (h *hTree) build(codeLengths []uint32) error {
// Calculate the number of symbols.
var nSymbols, lastSymbol uint32
for symbol, cl := range codeLengths {
if cl != 0 {
nSymbols++
lastSymbol = uint32(symbol)
}
}
if nSymbols == 0 {
return errInvalidHuffmanTree
}
h.nodes = make([]hNode, 1, 2*nSymbols-1)
// Handle the trivial case.
if nSymbols == 1 {
if len(codeLengths) <= int(lastSymbol) {
return errInvalidHuffmanTree
}
return h.insert(lastSymbol, 0, 0)
}
// Handle the non-trivial case.
codes, err := codeLengthsToCodes(codeLengths)
if err != nil {
return err
}
for symbol, cl := range codeLengths {
if cl > 0 {
if err := h.insert(uint32(symbol), codes[symbol], cl); err != nil {
return err
}
}
}
return nil
}
// buildSimple builds a Huffman tree with 1 or 2 symbols.
func (h *hTree) buildSimple(nSymbols uint32, symbols [2]uint32, alphabetSize uint32) error {
h.nodes = make([]hNode, 1, 2*nSymbols-1)
for i := uint32(0); i < nSymbols; i++ {
if symbols[i] >= alphabetSize {
return errInvalidHuffmanTree
}
if err := h.insert(symbols[i], i, nSymbols-1); err != nil {
return err
}
}
return nil
}
// next returns the next Huffman-encoded symbol from the bit-stream d.
func (h *hTree) next(d *decoder) (uint32, error) {
var n uint32
// Read enough bits so that we can use the look-up table.
if d.nBits < lutSize {
c, err := d.r.ReadByte()
if err != nil {
if err == io.EOF {
// There are no more bytes of data, but we may still be able
// to read the next symbol out of the previously read bits.
goto slowPath
}
return 0, err
}
d.bits |= uint32(c) << d.nBits
d.nBits += 8
}
// Use the look-up table.
n = h.lut[d.bits&lutMask]
if b := n & 0xff; b != 0 {
b--
d.bits >>= b
d.nBits -= b
return n >> 8, nil
}
n >>= 8
d.bits >>= lutSize
d.nBits -= lutSize
slowPath:
for h.nodes[n].children != leafNode {
if d.nBits == 0 {
c, err := d.r.ReadByte()
if err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
return 0, err
}
d.bits = uint32(c)
d.nBits = 8
}
n = uint32(h.nodes[n].children) + 1&d.bits
d.bits >>= 1
d.nBits--
}
return h.nodes[n].symbol, nil
}

299
vendor/golang.org/x/image/vp8l/transform.go generated vendored Normal file
View File

@ -0,0 +1,299 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package vp8l
// This file deals with image transforms, specified in section 3.
// nTiles returns the number of tiles needed to cover size pixels, where each
// tile's side is 1<<bits pixels long.
func nTiles(size int32, bits uint32) int32 {
return (size + 1<<bits - 1) >> bits
}
const (
transformTypePredictor = 0
transformTypeCrossColor = 1
transformTypeSubtractGreen = 2
transformTypeColorIndexing = 3
nTransformTypes = 4
)
// transform holds the parameters for an invertible transform.
type transform struct {
// transformType is the type of the transform.
transformType uint32
// oldWidth is the width of the image before transformation (or
// equivalently, after inverse transformation). The color-indexing
// transform can reduce the width. For example, a 50-pixel-wide
// image that only needs 4 bits (half a byte) per color index can
// be transformed into a 25-pixel-wide image.
oldWidth int32
// bits is the log-2 size of the transform's tiles, for the predictor
// and cross-color transforms. 8>>bits is the number of bits per
// color index, for the color-index transform.
bits uint32
// pix is the tile values, for the predictor and cross-color
// transforms, and the color palette, for the color-index transform.
pix []byte
}
var inverseTransforms = [nTransformTypes]func(*transform, []byte, int32) []byte{
transformTypePredictor: inversePredictor,
transformTypeCrossColor: inverseCrossColor,
transformTypeSubtractGreen: inverseSubtractGreen,
transformTypeColorIndexing: inverseColorIndexing,
}
func inversePredictor(t *transform, pix []byte, h int32) []byte {
if t.oldWidth == 0 || h == 0 {
return pix
}
// The first pixel's predictor is mode 0 (opaque black).
pix[3] += 0xff
p, mask := int32(4), int32(1)<<t.bits-1
for x := int32(1); x < t.oldWidth; x++ {
// The rest of the first row's predictor is mode 1 (L).
pix[p+0] += pix[p-4]
pix[p+1] += pix[p-3]
pix[p+2] += pix[p-2]
pix[p+3] += pix[p-1]
p += 4
}
top, tilesPerRow := 0, nTiles(t.oldWidth, t.bits)
for y := int32(1); y < h; y++ {
// The first column's predictor is mode 2 (T).
pix[p+0] += pix[top+0]
pix[p+1] += pix[top+1]
pix[p+2] += pix[top+2]
pix[p+3] += pix[top+3]
p, top = p+4, top+4
q := 4 * (y >> t.bits) * tilesPerRow
predictorMode := t.pix[q+1] & 0x0f
q += 4
for x := int32(1); x < t.oldWidth; x++ {
if x&mask == 0 {
predictorMode = t.pix[q+1] & 0x0f
q += 4
}
switch predictorMode {
case 0: // Opaque black.
pix[p+3] += 0xff
case 1: // L.
pix[p+0] += pix[p-4]
pix[p+1] += pix[p-3]
pix[p+2] += pix[p-2]
pix[p+3] += pix[p-1]
case 2: // T.
pix[p+0] += pix[top+0]
pix[p+1] += pix[top+1]
pix[p+2] += pix[top+2]
pix[p+3] += pix[top+3]
case 3: // TR.
pix[p+0] += pix[top+4]
pix[p+1] += pix[top+5]
pix[p+2] += pix[top+6]
pix[p+3] += pix[top+7]
case 4: // TL.
pix[p+0] += pix[top-4]
pix[p+1] += pix[top-3]
pix[p+2] += pix[top-2]
pix[p+3] += pix[top-1]
case 5: // Average2(Average2(L, TR), T).
pix[p+0] += avg2(avg2(pix[p-4], pix[top+4]), pix[top+0])
pix[p+1] += avg2(avg2(pix[p-3], pix[top+5]), pix[top+1])
pix[p+2] += avg2(avg2(pix[p-2], pix[top+6]), pix[top+2])
pix[p+3] += avg2(avg2(pix[p-1], pix[top+7]), pix[top+3])
case 6: // Average2(L, TL).
pix[p+0] += avg2(pix[p-4], pix[top-4])
pix[p+1] += avg2(pix[p-3], pix[top-3])
pix[p+2] += avg2(pix[p-2], pix[top-2])
pix[p+3] += avg2(pix[p-1], pix[top-1])
case 7: // Average2(L, T).
pix[p+0] += avg2(pix[p-4], pix[top+0])
pix[p+1] += avg2(pix[p-3], pix[top+1])
pix[p+2] += avg2(pix[p-2], pix[top+2])
pix[p+3] += avg2(pix[p-1], pix[top+3])
case 8: // Average2(TL, T).
pix[p+0] += avg2(pix[top-4], pix[top+0])
pix[p+1] += avg2(pix[top-3], pix[top+1])
pix[p+2] += avg2(pix[top-2], pix[top+2])
pix[p+3] += avg2(pix[top-1], pix[top+3])
case 9: // Average2(T, TR).
pix[p+0] += avg2(pix[top+0], pix[top+4])
pix[p+1] += avg2(pix[top+1], pix[top+5])
pix[p+2] += avg2(pix[top+2], pix[top+6])
pix[p+3] += avg2(pix[top+3], pix[top+7])
case 10: // Average2(Average2(L, TL), Average2(T, TR)).
pix[p+0] += avg2(avg2(pix[p-4], pix[top-4]), avg2(pix[top+0], pix[top+4]))
pix[p+1] += avg2(avg2(pix[p-3], pix[top-3]), avg2(pix[top+1], pix[top+5]))
pix[p+2] += avg2(avg2(pix[p-2], pix[top-2]), avg2(pix[top+2], pix[top+6]))
pix[p+3] += avg2(avg2(pix[p-1], pix[top-1]), avg2(pix[top+3], pix[top+7]))
case 11: // Select(L, T, TL).
l0 := int32(pix[p-4])
l1 := int32(pix[p-3])
l2 := int32(pix[p-2])
l3 := int32(pix[p-1])
c0 := int32(pix[top-4])
c1 := int32(pix[top-3])
c2 := int32(pix[top-2])
c3 := int32(pix[top-1])
t0 := int32(pix[top+0])
t1 := int32(pix[top+1])
t2 := int32(pix[top+2])
t3 := int32(pix[top+3])
l := abs(c0-t0) + abs(c1-t1) + abs(c2-t2) + abs(c3-t3)
t := abs(c0-l0) + abs(c1-l1) + abs(c2-l2) + abs(c3-l3)
if l < t {
pix[p+0] += uint8(l0)
pix[p+1] += uint8(l1)
pix[p+2] += uint8(l2)
pix[p+3] += uint8(l3)
} else {
pix[p+0] += uint8(t0)
pix[p+1] += uint8(t1)
pix[p+2] += uint8(t2)
pix[p+3] += uint8(t3)
}
case 12: // ClampAddSubtractFull(L, T, TL).
pix[p+0] += clampAddSubtractFull(pix[p-4], pix[top+0], pix[top-4])
pix[p+1] += clampAddSubtractFull(pix[p-3], pix[top+1], pix[top-3])
pix[p+2] += clampAddSubtractFull(pix[p-2], pix[top+2], pix[top-2])
pix[p+3] += clampAddSubtractFull(pix[p-1], pix[top+3], pix[top-1])
case 13: // ClampAddSubtractHalf(Average2(L, T), TL).
pix[p+0] += clampAddSubtractHalf(avg2(pix[p-4], pix[top+0]), pix[top-4])
pix[p+1] += clampAddSubtractHalf(avg2(pix[p-3], pix[top+1]), pix[top-3])
pix[p+2] += clampAddSubtractHalf(avg2(pix[p-2], pix[top+2]), pix[top-2])
pix[p+3] += clampAddSubtractHalf(avg2(pix[p-1], pix[top+3]), pix[top-1])
}
p, top = p+4, top+4
}
}
return pix
}
func inverseCrossColor(t *transform, pix []byte, h int32) []byte {
var greenToRed, greenToBlue, redToBlue int32
p, mask, tilesPerRow := int32(0), int32(1)<<t.bits-1, nTiles(t.oldWidth, t.bits)
for y := int32(0); y < h; y++ {
q := 4 * (y >> t.bits) * tilesPerRow
for x := int32(0); x < t.oldWidth; x++ {
if x&mask == 0 {
redToBlue = int32(int8(t.pix[q+0]))
greenToBlue = int32(int8(t.pix[q+1]))
greenToRed = int32(int8(t.pix[q+2]))
q += 4
}
red := pix[p+0]
green := pix[p+1]
blue := pix[p+2]
red += uint8(uint32(greenToRed*int32(int8(green))) >> 5)
blue += uint8(uint32(greenToBlue*int32(int8(green))) >> 5)
blue += uint8(uint32(redToBlue*int32(int8(red))) >> 5)
pix[p+0] = red
pix[p+2] = blue
p += 4
}
}
return pix
}
func inverseSubtractGreen(t *transform, pix []byte, h int32) []byte {
for p := 0; p < len(pix); p += 4 {
green := pix[p+1]
pix[p+0] += green
pix[p+2] += green
}
return pix
}
func inverseColorIndexing(t *transform, pix []byte, h int32) []byte {
if t.bits == 0 {
for p := 0; p < len(pix); p += 4 {
i := 4 * uint32(pix[p+1])
pix[p+0] = t.pix[i+0]
pix[p+1] = t.pix[i+1]
pix[p+2] = t.pix[i+2]
pix[p+3] = t.pix[i+3]
}
return pix
}
vMask, xMask, bitsPerPixel := uint32(0), int32(0), uint32(8>>t.bits)
switch t.bits {
case 1:
vMask, xMask = 0x0f, 0x01
case 2:
vMask, xMask = 0x03, 0x03
case 3:
vMask, xMask = 0x01, 0x07
}
d, p, v, dst := 0, 0, uint32(0), make([]byte, 4*t.oldWidth*h)
for y := int32(0); y < h; y++ {
for x := int32(0); x < t.oldWidth; x++ {
if x&xMask == 0 {
v = uint32(pix[p+1])
p += 4
}
i := 4 * (v & vMask)
dst[d+0] = t.pix[i+0]
dst[d+1] = t.pix[i+1]
dst[d+2] = t.pix[i+2]
dst[d+3] = t.pix[i+3]
d += 4
v >>= bitsPerPixel
}
}
return dst
}
func abs(x int32) int32 {
if x < 0 {
return -x
}
return x
}
func avg2(a, b uint8) uint8 {
return uint8((int32(a) + int32(b)) / 2)
}
func clampAddSubtractFull(a, b, c uint8) uint8 {
x := int32(a) + int32(b) - int32(c)
if x < 0 {
return 0
}
if x > 255 {
return 255
}
return uint8(x)
}
func clampAddSubtractHalf(a, b uint8) uint8 {
x := int32(a) + (int32(a)-int32(b))/2
if x < 0 {
return 0
}
if x > 255 {
return 255
}
return uint8(x)
}

3
vendor/modules.txt vendored
View File

@ -16,10 +16,7 @@ github.com/spf13/pflag
# golang.org/x/image v0.1.0 # golang.org/x/image v0.1.0
## explicit; go 1.12 ## explicit; go 1.12
golang.org/x/image/bmp golang.org/x/image/bmp
golang.org/x/image/ccitt
golang.org/x/image/riff golang.org/x/image/riff
golang.org/x/image/tiff
golang.org/x/image/tiff/lzw
golang.org/x/image/vp8 golang.org/x/image/vp8
golang.org/x/image/vp8l golang.org/x/image/vp8l
golang.org/x/image/webp golang.org/x/image/webp