protocol: Add Participant and Session

This commit is contained in:
Joshua Scott 2018-04-09 21:53:09 +01:00
parent 57ef9b95f8
commit 5ff4fb651d
5 changed files with 578 additions and 1 deletions

View File

@ -0,0 +1,77 @@
#pragma once
#include <cstdint>
#include <sstream>
#define KI_DEFAULT_MAXIMUM_RECEIVE_SIZE 0x2000
#define KI_START_SIGNAL 0xF00D
namespace ki
{
namespace protocol
{
namespace net
{
enum class ReceiveState
{
// Waiting for the 0xF00D start signal.
WAITING_FOR_START_SIGNAL,
// Waiting for the 2-byte length.
WAITING_FOR_LENGTH,
// Waiting for the packet data.
WAITING_FOR_PACKET
};
enum class ParticipantType
{
SERVER,
CLIENT
};
/**
* This class implements the packet framing logic when
* sending and receiving data to/from an external source.
*/
class Participant
{
public:
Participant(ParticipantType type);
virtual ~Participant() = default;
ParticipantType get_type() const;
void set_type(ParticipantType type);
uint16_t get_maximum_packet_size() const;
void set_maximum_packet_size(uint16_t maximum_packet_size);
protected:
std::stringstream m_data_stream;
/**
* Frames raw data into a Packet, and transmits it.
*/
void send_data(const char *data, size_t size);
/**
* Process incoming raw data into Packets.
* Once a packet is read into the internal data
* stream, handle_packet_available is called.
*/
void process_data(const char *data, size_t size);
virtual void close() = 0;
private:
ParticipantType m_type;
uint16_t m_maximum_packet_size;
ReceiveState m_receive_state;
uint16_t m_start_signal;
uint16_t m_incoming_packet_size;
uint8_t m_shift;
virtual void send_packet_data(const char *data, const size_t size) = 0;
virtual void on_packet_available() {};
};
}
}
}

View File

@ -0,0 +1,88 @@
#pragma once
#include "Participant.h"
#include "PacketHeader.h"
#include "ki/protocol/control/Opcode.h"
#include "../../util/Serializable.h"
#include <cstdint>
#include <chrono>
#include <type_traits>
namespace ki
{
namespace protocol
{
namespace net
{
/**
* This class implements session logic on top of the
* low-level Participant class.
*/
class Session : public Participant
{
public:
Session(ParticipantType type, uint16_t id);
uint16_t get_id() const;
bool is_established() const;
uint8_t get_access_level() const;
void set_access_level(uint8_t access_level);
uint16_t get_latency() const;
bool is_alive() const;
protected:
template <typename DataT>
void send_packet(const bool is_control, const control::Opcode opcode,
const DataT &data)
{
static_assert(std::is_base_of<util::Serializable, DataT>::value,
"DataT must inherit Serializable.");
std::ostringstream ss;
PacketHeader header(is_control, (uint8_t)opcode);
header.write_to(ss);
data.write_to(ss);
const auto buffer = ss.str();
send_data(buffer.c_str(), buffer.length());
}
template <typename DataT>
DataT read_data()
{
static_assert(std::is_base_of<util::Serializable, DataT>::value,
"DataT must inherit Serializable.");
DataT data = DataT();
data.read_from(m_data_stream);
return data;
}
void on_connected();
virtual void on_established() {};
virtual void on_application_message(const PacketHeader &header) {};
virtual void on_invalid_packet() {};
private:
uint16_t m_id;
bool m_established;
uint8_t m_access_level;
uint16_t m_latency;
std::chrono::steady_clock::time_point m_creation_time;
std::chrono::steady_clock::time_point m_establish_time;
std::chrono::steady_clock::time_point m_last_heartbeat;
void on_packet_available() override final;
void on_control_message(const PacketHeader &header);
void on_server_hello();
void on_client_hello();
void on_ping();
void on_ping_response();
void on_hello(uint16_t session_id, uint32_t timestamp,
uint16_t milliseconds);
};
}
}
}

View File

@ -1,6 +1,5 @@
target_sources(${PROJECT_NAME} target_sources(${PROJECT_NAME}
PRIVATE PRIVATE
${PROJECT_SOURCE_DIR}/src/protocol/Packet.cpp
${PROJECT_SOURCE_DIR}/src/protocol/control/ClientHello.cpp ${PROJECT_SOURCE_DIR}/src/protocol/control/ClientHello.cpp
${PROJECT_SOURCE_DIR}/src/protocol/control/ServerHello.cpp ${PROJECT_SOURCE_DIR}/src/protocol/control/ServerHello.cpp
${PROJECT_SOURCE_DIR}/src/protocol/control/Ping.cpp ${PROJECT_SOURCE_DIR}/src/protocol/control/Ping.cpp
@ -9,4 +8,7 @@ target_sources(${PROJECT_NAME}
${PROJECT_SOURCE_DIR}/src/protocol/dml/MessageManager.cpp ${PROJECT_SOURCE_DIR}/src/protocol/dml/MessageManager.cpp
${PROJECT_SOURCE_DIR}/src/protocol/dml/MessageModule.cpp ${PROJECT_SOURCE_DIR}/src/protocol/dml/MessageModule.cpp
${PROJECT_SOURCE_DIR}/src/protocol/dml/MessageTemplate.cpp ${PROJECT_SOURCE_DIR}/src/protocol/dml/MessageTemplate.cpp
${PROJECT_SOURCE_DIR}/src/protocol/net/PacketHeader.cpp
${PROJECT_SOURCE_DIR}/src/protocol/net/Participant.cpp
${PROJECT_SOURCE_DIR}/src/protocol/net/Session.cpp
) )

View File

@ -0,0 +1,137 @@
#include "ki/protocol/net/Participant.h"
#include "ki/protocol/exception.h"
namespace ki
{
namespace protocol
{
namespace net
{
Participant::Participant(const ParticipantType type)
{
m_type = type;
m_maximum_packet_size = KI_DEFAULT_MAXIMUM_RECEIVE_SIZE;
m_receive_state = ReceiveState::WAITING_FOR_START_SIGNAL;
m_start_signal = 0;
m_incoming_packet_size = 0;
m_shift = 0;
}
ParticipantType Participant::get_type() const
{
return m_type;
}
void Participant::set_type(const ParticipantType type)
{
m_type = type;
}
uint16_t Participant::get_maximum_packet_size() const
{
return m_maximum_packet_size;
}
void Participant::set_maximum_packet_size(const uint16_t maximum_packet_size)
{
m_maximum_packet_size = maximum_packet_size;
}
void Participant::send_data(const char* data, const size_t size)
{
// Allocate the entire buffer
char *packet_data = new char[size + 4];
// Add the frame header
((uint16_t *)packet_data)[0] = KI_START_SIGNAL;
((uint16_t *)packet_data)[1] = size;
// Copy the payload into the buffer and send it
memcpy(&packet_data[4], data, size);
send_packet_data(packet_data, size + 4);
delete[] packet_data;
}
void Participant::process_data(const char *data, const size_t size)
{
size_t position = 0;
while (position < size)
{
switch (m_receive_state)
{
case ReceiveState::WAITING_FOR_START_SIGNAL:
m_start_signal |= ((uint8_t)data[position] << m_shift);
if (m_shift == 0)
m_shift = 8;
else
{
// If the start signal isn't correct, we've either
// gotten out of sync, or they are not framing packets
// correctly.
if (m_start_signal != KI_START_SIGNAL)
{
close();
return;
}
// Reset the shift and incoming packet size
m_shift = 0;
m_incoming_packet_size = 0;
m_receive_state = ReceiveState::WAITING_FOR_LENGTH;
}
position++;
break;
case ReceiveState::WAITING_FOR_LENGTH:
m_incoming_packet_size |= ((uint8_t)data[position] << m_shift);
if (m_shift == 0)
m_shift = 8;
else
{
// If the incoming packet is larger than we are accepting
// stop processing data.
if (m_incoming_packet_size > m_maximum_packet_size)
{
close();
return;
}
// Reset read and write positions
m_data_stream.seekp(0, std::ios::beg);
m_data_stream.seekg(0, std::ios::beg);
m_receive_state = ReceiveState::WAITING_FOR_PACKET;
}
position++;
break;
case ReceiveState::WAITING_FOR_PACKET:
// Work out how much data we should read into our stream
const size_t data_available = (size - position);
const size_t read_size = (data_available >= m_incoming_packet_size) ?
m_incoming_packet_size : data_available;
// Write the data to the data stream
m_data_stream.write(&data[position], read_size);
position += read_size;
m_incoming_packet_size -= read_size;
// Have we received the entire packet?
if (m_incoming_packet_size == 0)
{
on_packet_available();
// Reset the shift and start signal
m_shift = 0;
m_start_signal = 0;
m_receive_state = ReceiveState::WAITING_FOR_START_SIGNAL;
}
break;
}
}
}
}
}
}

View File

@ -0,0 +1,273 @@
#include "ki/protocol/net/Session.h"
#include "ki/protocol/exception.h"
#include "ki/protocol/control/ServerHello.h"
#include "ki/protocol/control/ClientHello.h"
#include "ki/protocol/control/Ping.h"
namespace ki
{
namespace protocol
{
namespace net
{
Session::Session(const ParticipantType type, const uint16_t id)
: Participant(type)
{
m_id = id;
m_established = false;
m_access_level = 0;
m_latency = 0;
m_creation_time = std::chrono::steady_clock::now();
}
uint16_t Session::get_id() const
{
return m_id;
}
bool Session::is_established() const
{
return m_established;
}
uint8_t Session::get_access_level() const
{
return m_access_level;
}
void Session::set_access_level(const uint8_t access_level)
{
m_access_level = access_level;
}
uint16_t Session::get_latency() const
{
return m_latency;
}
bool Session::is_alive() const
{
// If the session isn't established yet, use the time of
// creation to decide whether this session is alive.
if (!m_established)
return std::chrono::duration_cast<std::chrono::seconds>(
std::chrono::steady_clock::now() - m_creation_time
).count() <= 3;
// Otherwise, use the last time we received a heartbeat.
return std::chrono::duration_cast<std::chrono::seconds>(
std::chrono::steady_clock::now() - m_last_heartbeat
).count() <= 10;
}
void Session::on_connected()
{
// If this is the server-side of a Session
// we need to send SERVER_HELLO first.
if (get_type() == ParticipantType::SERVER)
{
// Work out the current timestamp and how many milliseconds
// have elapsed in the current second.
auto now = std::chrono::system_clock::now();
const auto timestamp = std::chrono::duration_cast<std::chrono::seconds>(
now.time_since_epoch()
).count();
const auto milliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(
now.time_since_epoch()
).count() - (timestamp * 1000);
// Send a SERVER_HELLO packet to the client
const control::ServerHello hello(m_id, timestamp, milliseconds);
send_packet<control::ServerHello>(
true, control::Opcode::SERVER_HELLO, hello);
}
}
void Session::on_packet_available()
{
// Read the packet header
PacketHeader header;
try
{
header.read_from(m_data_stream);
}
catch (parse_error &e)
{
on_invalid_packet();
return;
}
// Hand off to the right handler based on
// whether this is a control packet or not
if (header.is_control())
on_control_message(header);
else
on_application_message(header);
}
void Session::on_control_message(const PacketHeader& header)
{
switch ((control::Opcode)header.get_opcode())
{
case (control::Opcode::SERVER_HELLO):
on_server_hello();
break;
case (control::Opcode::CLIENT_HELLO):
on_client_hello();
break;
case (control::Opcode::PING):
on_ping();
break;
case (control::Opcode::PING_RSP):
on_ping_response();
break;
default:
break;
}
}
void Session::on_server_hello()
{
// If this is the server-side of a Session
// we can't handle a SERVER_HELLO
if (get_type() != ParticipantType::CLIENT)
{
close();
return;
}
// Read the payload data into a structure
try
{
// We've been given our id from the server now
const auto server_hello = read_data<control::ServerHello>();
m_id = server_hello.get_session_id();
on_hello(m_id,
server_hello.get_timestamp(),
server_hello.get_milliseconds());
// Work out the current timestamp and how many milliseconds
// have elapsed in the current second.
auto now = std::chrono::system_clock::now();
const auto timestamp = std::chrono::duration_cast<std::chrono::seconds>(
now.time_since_epoch()
).count();
const auto milliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(
now.time_since_epoch()
).count() - (timestamp * 1000);
// Send a CLIENT_HELLO packet to the server
const control::ClientHello hello(m_id, timestamp, milliseconds);
send_packet<control::ClientHello>(
true, control::Opcode::CLIENT_HELLO, hello);
}
catch (parse_error &e)
{
// The CLIENT_HELLO wasn't valid...
// Close the session
close();
}
}
void Session::on_client_hello()
{
// If this is the client-side of a Session
// we can't handle a CLIENT_HELLO
if (get_type() != ParticipantType::SERVER)
{
close();
return;
}
// Read the payload data into a structure
try
{
// The session is now established!
const auto client_hello = read_data<control::ClientHello>();
on_hello(client_hello.get_session_id(),
client_hello.get_timestamp(),
client_hello.get_milliseconds());
}
catch (parse_error &e)
{
// The CLIENT_HELLO wasn't valid...
// Close the session
close();
}
}
void Session::on_ping()
{
// Read the payload data into a structure
try
{
const auto ping = read_data<control::Ping>();
if (get_type() == ParticipantType::SERVER)
{
// Calculate latency
const auto send_time = m_establish_time +
std::chrono::milliseconds(ping.get_milliseconds()) +
std::chrono::minutes(ping.get_minutes());
m_latency = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now() - send_time
).count();
}
// Send the response
send_packet<control::Ping>(
true, control::Opcode::PING_RSP, ping);
}
catch (parse_error &e)
{
// The CLIENT_HELLO wasn't valid...
// Close the session
close();
}
}
void Session::on_ping_response()
{
// Read the payload data into a structure
try
{
const auto ping = read_data<control::Ping>();
}
catch (parse_error &e)
{
// The CLIENT_HELLO wasn't valid...
// Close the session
close();
}
}
void Session::on_hello(const uint16_t session_id,
const uint32_t timestamp, const uint16_t milliseconds)
{
// Make sure they're accepting this session
if (session_id != m_id)
{
close();
return;
}
// Calculate initial latency
const std::chrono::system_clock::time_point epoch;
const auto send_time = epoch + (std::chrono::seconds(timestamp) +
std::chrono::milliseconds(milliseconds));
m_latency = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::system_clock::now() - send_time
).count();
// The session is successfully established
m_established = true;
m_establish_time = std::chrono::steady_clock::now();
m_last_heartbeat = m_establish_time;
on_established();
}
}
}
}