eBookReaderSwitch/mupdf/source/fitz/load-pnm.c

780 lines
18 KiB
C

#include "mupdf/fitz.h"
#include <string.h>
#include <limits.h>
enum
{
PAM_UNKNOWN = 0,
PAM_BW,
PAM_BWA,
PAM_GRAY,
PAM_GRAYA,
PAM_RGB,
PAM_RGBA,
PAM_CMYK,
PAM_CMYKA,
};
enum
{
TOKEN_UNKNOWN = 0,
TOKEN_WIDTH,
TOKEN_HEIGHT,
TOKEN_DEPTH,
TOKEN_MAXVAL,
TOKEN_TUPLTYPE,
TOKEN_ENDHDR,
};
struct info
{
int subimages;
fz_colorspace *cs;
int width, height;
int maxval, bitdepth;
int depth, alpha;
int tupletype;
};
static inline int iswhiteeol(int a)
{
switch (a) {
case ' ': case '\t': case '\r': case '\n':
return 1;
}
return 0;
}
static inline int iswhite(int a)
{
switch (a) {
case ' ': case '\t':
return 1;
}
return 0;
}
static inline int iseol(int a)
{
switch (a) {
case '\r': case '\n':
return 1;
}
return 0;
}
static inline int bitdepth_from_maxval(int maxval)
{
int depth = 0;
while (maxval)
{
maxval >>= 1;
depth++;
}
return depth;
}
static const unsigned char *
pnm_read_white(fz_context *ctx, const unsigned char *p, const unsigned char *e, int single_line)
{
if (e - p < 1)
fz_throw(ctx, FZ_ERROR_GENERIC, "cannot parse whitespace in pnm image");
if (single_line)
{
if (!iswhiteeol(*p) && *p != '#')
fz_throw(ctx, FZ_ERROR_GENERIC, "expected whitespace/comment in pnm image");
while (p < e && iswhite(*p))
p++;
if (p < e && *p == '#')
while (p < e && !iseol(*p))
p++;
if (p < e && iseol(*p))
p++;
}
else
{
if (!iswhiteeol(*p) && *p != '#')
fz_throw(ctx, FZ_ERROR_GENERIC, "expected whitespace in pnm image");
while (p < e && iswhiteeol(*p))
p++;
while (p < e && *p == '#')
{
while (p < e && !iseol(*p))
p++;
if (p < e && iseol(*p))
p++;
while (p < e && iswhiteeol(*p))
p++;
if (p < e && iseol(*p))
p++;
}
}
return p;
}
static const unsigned char *
pnm_read_signature(fz_context *ctx, const unsigned char *p, const unsigned char *e, char *signature)
{
if (e - p < 2)
fz_throw(ctx, FZ_ERROR_GENERIC, "cannot parse magic number in pnm image");
if (p[0] != 'P' || p[1] < '1' || p[1] > '7')
fz_throw(ctx, FZ_ERROR_GENERIC, "expected signature in pnm image");
signature[0] = *p++;
signature[1] = *p++;
return p;
}
static const unsigned char *
pnm_read_number(fz_context *ctx, const unsigned char *p, const unsigned char *e, int *number)
{
if (e - p < 1)
fz_throw(ctx, FZ_ERROR_GENERIC, "cannot parse number in pnm image");
if (*p < '0' || *p > '9')
fz_throw(ctx, FZ_ERROR_GENERIC, "expected numeric field in pnm image");
while (p < e && *p >= '0' && *p <= '9')
{
if (number)
*number = *number * 10 + *p - '0';
p++;
}
return p;
}
static const unsigned char *
pnm_read_tupletype(fz_context *ctx, const unsigned char *p, const unsigned char *e, int *tupletype)
{
const struct { int len; char *str; int type; } tupletypes[] =
{
{13, "BLACKANDWHITE", PAM_BW},
{19, "BLACKANDWHITE_ALPHA", PAM_BWA},
{9, "GRAYSCALE", PAM_GRAY},
{15, "GRAYSCALE_ALPHA", PAM_GRAYA},
{3, "RGB", PAM_RGB},
{9, "RGB_ALPHA", PAM_RGBA},
{4, "CMYK", PAM_CMYK},
{10, "CMYK_ALPHA", PAM_CMYKA},
};
const unsigned char *s;
int i, len;
if (e - p < 1)
fz_throw(ctx, FZ_ERROR_GENERIC, "cannot parse tuple type in pnm image");
s = p;
while (!iswhiteeol(*p))
p++;
len = p - s;
for (i = 0; i < (int)nelem(tupletypes); i++)
if (len == tupletypes[i].len && !strncmp((char *) s, tupletypes[i].str, len))
{
*tupletype = tupletypes[i].type;
return p;
}
fz_throw(ctx, FZ_ERROR_GENERIC, "unknown tuple type in pnm image");
}
static const unsigned char *
pnm_read_token(fz_context *ctx, const unsigned char *p, const unsigned char *e, int *token)
{
const struct { int len; char *str; int type; } tokens[] =
{
{5, "WIDTH", TOKEN_WIDTH},
{6, "HEIGHT", TOKEN_HEIGHT},
{5, "DEPTH", TOKEN_DEPTH},
{6, "MAXVAL", TOKEN_MAXVAL},
{8, "TUPLTYPE", TOKEN_TUPLTYPE},
{6, "ENDHDR", TOKEN_ENDHDR},
};
const unsigned char *s;
int i, len;
if (e - p < 1)
fz_throw(ctx, FZ_ERROR_GENERIC, "cannot parse header token in pnm image");
s = p;
while (!iswhiteeol(*p))
p++;
len = p - s;
for (i = 0; i < (int)nelem(tokens); i++)
if (len == tokens[i].len && !strncmp((char *) s, tokens[i].str, len))
{
*token = tokens[i].type;
return p;
}
fz_throw(ctx, FZ_ERROR_GENERIC, "unknown header token in pnm image");
}
static int
map_color(fz_context *ctx, int color, int inmax, int outmax)
{
float f = (float) color / inmax;
return f * outmax;
}
static fz_pixmap *
pnm_ascii_read_image(fz_context *ctx, struct info *pnm, const unsigned char *p, const unsigned char *e, int onlymeta, int bitmap, const unsigned char **out)
{
fz_pixmap *img = NULL;
p = pnm_read_number(ctx, p, e, &pnm->width);
p = pnm_read_white(ctx, p, e, 0);
if (bitmap)
{
p = pnm_read_number(ctx, p, e, &pnm->height);
p = pnm_read_white(ctx, p, e, 1);
pnm->maxval = 1;
}
else
{
p = pnm_read_number(ctx, p, e, &pnm->height);
p = pnm_read_white(ctx, p, e, 0);
p = pnm_read_number(ctx, p, e, &pnm->maxval);
p = pnm_read_white(ctx, p, e, 0);
}
if (pnm->maxval <= 0 || pnm->maxval >= 65536)
fz_throw(ctx, FZ_ERROR_GENERIC, "maximum sample value of out range in pnm image: %d", pnm->maxval);
pnm->bitdepth = bitdepth_from_maxval(pnm->maxval);
if (pnm->height <= 0)
fz_throw(ctx, FZ_ERROR_GENERIC, "image height must be > 0");
if (pnm->width <= 0)
fz_throw(ctx, FZ_ERROR_GENERIC, "image width must be > 0");
if ((unsigned int)pnm->height > UINT_MAX / pnm->width / fz_colorspace_n(ctx, pnm->cs) / (pnm->bitdepth / 8 + 1))
fz_throw(ctx, FZ_ERROR_GENERIC, "image too large");
if (onlymeta)
{
int x, y, k;
int w, h, n;
w = pnm->width;
h = pnm->height;
n = fz_colorspace_n(ctx, pnm->cs);
if (bitmap)
{
for (y = 0; y < h; y++)
for (x = -1; x < w; x++)
{
p = pnm_read_number(ctx, p, e, NULL);
p = pnm_read_white(ctx, p, e, 0);
}
}
else
{
for (y = 0; y < h; y++)
for (x = 0; x < w; x++)
for (k = 0; k < n; k++)
{
p = pnm_read_number(ctx, p, e, NULL);
p = pnm_read_white(ctx, p, e, 0);
}
}
}
else
{
unsigned char *dp;
int x, y, k;
int w, h, n;
img = fz_new_pixmap(ctx, pnm->cs, pnm->width, pnm->height, NULL, 0);
dp = img->samples;
w = img->w;
h = img->h;
n = img->n;
if (bitmap)
{
for (y = 0; y < h; y++)
{
for (x = 0; x < w; x++)
{
int v = 0;
p = pnm_read_number(ctx, p, e, &v);
p = pnm_read_white(ctx, p, e, 0);
*dp++ = v ? 0x00 : 0xff;
}
}
}
else
{
for (y = 0; y < h; y++)
for (x = 0; x < w; x++)
for (k = 0; k < n; k++)
{
int v = 0;
p = pnm_read_number(ctx, p, e, &v);
p = pnm_read_white(ctx, p, e, 0);
v = fz_clampi(v, 0, pnm->maxval);
*dp++ = map_color(ctx, v, pnm->maxval, 255);
}
}
}
if (out)
*out = p;
return img;
}
static fz_pixmap *
pnm_binary_read_image(fz_context *ctx, struct info *pnm, const unsigned char *p, const unsigned char *e, int onlymeta, int bitmap, const unsigned char **out)
{
fz_pixmap *img = NULL;
pnm->width = 0;
p = pnm_read_number(ctx, p, e, &pnm->width);
p = pnm_read_white(ctx, p, e, 0);
if (bitmap)
{
pnm->height = 0;
p = pnm_read_number(ctx, p, e, &pnm->height);
p = pnm_read_white(ctx, p, e, 1);
pnm->maxval = 1;
}
else
{
pnm->height = 0;
p = pnm_read_number(ctx, p, e, &pnm->height);
p = pnm_read_white(ctx, p, e, 0);
pnm->maxval = 0;
p = pnm_read_number(ctx, p, e, &pnm->maxval);
p = pnm_read_white(ctx, p, e, 1);
}
if (pnm->maxval <= 0 || pnm->maxval >= 65536)
fz_throw(ctx, FZ_ERROR_GENERIC, "maximum sample value of out range in pnm image: %d", pnm->maxval);
pnm->bitdepth = bitdepth_from_maxval(pnm->maxval);
if (pnm->height <= 0)
fz_throw(ctx, FZ_ERROR_GENERIC, "image height must be > 0");
if (pnm->width <= 0)
fz_throw(ctx, FZ_ERROR_GENERIC, "image width must be > 0");
if ((unsigned int)pnm->height > UINT_MAX / pnm->width / fz_colorspace_n(ctx, pnm->cs) / (pnm->bitdepth / 8 + 1))
fz_throw(ctx, FZ_ERROR_GENERIC, "image too large");
if (onlymeta)
{
int w = pnm->width;
int h = pnm->height;
int n = fz_colorspace_n(ctx, pnm->cs);
if (pnm->maxval == 255)
p += n * w * h;
else if (bitmap)
p += ((w + 7) / 8) * h;
else if (pnm->maxval < 255)
p += n * w * h;
else
p += 2 * n * w * h;
}
else
{
unsigned char *dp;
int x, y, k;
int w, h, n;
img = fz_new_pixmap(ctx, pnm->cs, pnm->width, pnm->height, NULL, 0);
dp = img->samples;
w = img->w;
h = img->h;
n = img->n;
if (pnm->maxval == 255)
{
memcpy(dp, p, w * h * n);
p += n * w * h;
}
else if (bitmap)
{
for (y = 0; y < h; y++)
{
for (x = 0; x < w; x++)
{
*dp++ = (*p & (1 << (7 - (x & 0x7)))) ? 0x00 : 0xff;
if ((x & 0x7) == 7)
p++;
}
if (w & 0x7)
p++;
}
}
else if (pnm->maxval < 255)
{
for (y = 0; y < h; y++)
for (x = 0; x < w; x++)
for (k = 0; k < n; k++)
*dp++ = map_color(ctx, *p++, pnm->maxval, 255);
}
else
{
for (y = 0; y < h; y++)
for (x = 0; x < w; x++)
for (k = 0; k < n; k++)
{
*dp++ = map_color(ctx, (p[0] << 8) | p[1], pnm->maxval, 255);
p += 2;
}
}
}
if (out)
*out = p;
return img;
}
static const unsigned char *
pam_binary_read_header(fz_context *ctx, struct info *pnm, const unsigned char *p, const unsigned char *e)
{
int token = TOKEN_UNKNOWN;
pnm->width = 0;
pnm->height = 0;
pnm->depth = 0;
pnm->maxval = 0;
pnm->tupletype = 0;
while (p < e && token != TOKEN_ENDHDR)
{
p = pnm_read_token(ctx, p, e, &token);
p = pnm_read_white(ctx, p, e, 0);
switch (token)
{
case TOKEN_WIDTH: p = pnm_read_number(ctx, p, e, &pnm->width); break;
case TOKEN_HEIGHT: p = pnm_read_number(ctx, p, e, &pnm->height); break;
case TOKEN_DEPTH: p = pnm_read_number(ctx, p, e, &pnm->depth); break;
case TOKEN_MAXVAL: p = pnm_read_number(ctx, p, e, &pnm->maxval); break;
case TOKEN_TUPLTYPE: p = pnm_read_tupletype(ctx, p, e, &pnm->tupletype); break;
case TOKEN_ENDHDR: break;
default: fz_throw(ctx, FZ_ERROR_GENERIC, "unknown header token in pnm image");
}
if (token != TOKEN_ENDHDR)
p = pnm_read_white(ctx, p, e, 0);
}
return p;
}
static fz_pixmap *
pam_binary_read_image(fz_context *ctx, struct info *pnm, const unsigned char *p, const unsigned char *e, int onlymeta, const unsigned char **out)
{
fz_pixmap *img = NULL;
int bitmap = 0;
int minval = 1;
int maxval = 65535;
fz_var(img);
p = pam_binary_read_header(ctx, pnm, p, e);
if (pnm->tupletype == PAM_UNKNOWN)
switch (pnm->depth)
{
case 1: pnm->tupletype = pnm->maxval == 1 ? PAM_BW : PAM_GRAY; break;
case 2: pnm->tupletype = pnm->maxval == 1 ? PAM_BWA : PAM_GRAYA; break;
case 3: pnm->tupletype = PAM_RGB; break;
case 4: pnm->tupletype = PAM_CMYK; break;
case 5: pnm->tupletype = PAM_CMYKA; break;
default:
fz_throw(ctx, FZ_ERROR_GENERIC, "cannot guess tuple type based on depth in pnm image");
}
if (pnm->tupletype == PAM_BW && pnm->maxval > 1)
pnm->tupletype = PAM_GRAY;
else if (pnm->tupletype == PAM_GRAY && pnm->maxval == 1)
pnm->tupletype = PAM_BW;
else if (pnm->tupletype == PAM_BWA && pnm->maxval > 1)
pnm->tupletype = PAM_GRAYA;
else if (pnm->tupletype == PAM_GRAYA && pnm->maxval == 1)
pnm->tupletype = PAM_BWA;
switch (pnm->tupletype)
{
case PAM_BWA:
pnm->alpha = 1;
/* fallthrough */
case PAM_BW:
pnm->cs = fz_device_gray(ctx);
maxval = 1;
bitmap = 1;
break;
case PAM_GRAYA:
pnm->alpha = 1;
/* fallthrough */
case PAM_GRAY:
pnm->cs = fz_device_gray(ctx);
minval = 2;
break;
case PAM_RGBA:
pnm->alpha = 1;
/* fallthrough */
case PAM_RGB:
pnm->cs = fz_device_rgb(ctx);
break;
case PAM_CMYKA:
pnm->alpha = 1;
/* fallthrough */
case PAM_CMYK:
pnm->cs = fz_device_cmyk(ctx);
break;
default:
fz_throw(ctx, FZ_ERROR_GENERIC, "unsupported tuple type");
}
if (pnm->depth != fz_colorspace_n(ctx, pnm->cs) + pnm->alpha)
fz_throw(ctx, FZ_ERROR_GENERIC, "depth out of tuple type range");
if (pnm->maxval < minval || pnm->maxval > maxval)
fz_throw(ctx, FZ_ERROR_GENERIC, "maxval out of range");
pnm->bitdepth = bitdepth_from_maxval(pnm->maxval);
if (pnm->height <= 0)
fz_throw(ctx, FZ_ERROR_GENERIC, "image height must be > 0");
if (pnm->width <= 0)
fz_throw(ctx, FZ_ERROR_GENERIC, "image width must be > 0");
if ((unsigned int)pnm->height > UINT_MAX / pnm->width / fz_colorspace_n(ctx, pnm->cs) / (pnm->bitdepth / 8 + 1))
fz_throw(ctx, FZ_ERROR_GENERIC, "image too large");
if (onlymeta)
{
int packed;
int w, h, n;
w = pnm->width;
h = pnm->height;
n = fz_colorspace_n(ctx, pnm->cs) + pnm->alpha;
/* some encoders incorrectly pack bits into bytes and invert the image */
packed = 0;
if (pnm->maxval == 1)
{
const unsigned char *e_packed = p + w * h * n / 8;
if (e_packed < e - 1 && e_packed[0] == 'P' && e_packed[1] >= '0' && e_packed[1] <= '7')
e = e_packed;
if (e - p < w * h * n)
packed = 1;
}
if (packed && e - p < w * h * n / 8)
fz_throw(ctx, FZ_ERROR_GENERIC, "truncated packed image");
if (!packed && e - p < w * h * n * (pnm->maxval < 256 ? 1 : 2))
fz_throw(ctx, FZ_ERROR_GENERIC, "truncated image");
if (pnm->maxval == 255)
p += n * w * h;
else if (bitmap && packed)
p += ((w + 7) / 8) * h;
else if (bitmap)
p += n * w * h;
else if (pnm->maxval < 255)
p += n * w * h;
else
p += 2 * n * w * h;
}
if (!onlymeta)
{
unsigned char *dp;
int x, y, k, packed;
int w, h, n;
img = fz_new_pixmap(ctx, pnm->cs, pnm->width, pnm->height, NULL, pnm->alpha);
fz_try(ctx)
{
dp = img->samples;
w = img->w;
h = img->h;
n = img->n;
/* some encoders incorrectly pack bits into bytes and invert the image */
packed = 0;
if (pnm->maxval == 1)
{
const unsigned char *e_packed = p + w * h * n / 8;
if (e_packed < e - 1 && e_packed[0] == 'P' && e_packed[1] >= '0' && e_packed[1] <= '7')
e = e_packed;
if (e - p < w * h * n)
packed = 1;
}
if (packed && e - p < w * h * n / 8)
fz_throw(ctx, FZ_ERROR_GENERIC, "truncated packed image");
if (!packed && e - p < w * h * n * (pnm->maxval < 256 ? 1 : 2))
fz_throw(ctx, FZ_ERROR_GENERIC, "truncated image");
if (pnm->maxval == 255)
memcpy(dp, p, w * h * n);
else if (bitmap && packed)
{
for (y = 0; y < h; y++)
for (x = 0; x < w; x++)
{
for (k = 0; k < n; k++)
{
*dp++ = (*p & (1 << (7 - (x & 0x7)))) ? 0x00 : 0xff;
if ((x & 0x7) == 7)
p++;
}
if (w & 0x7)
p++;
}
}
else if (bitmap)
{
for (y = 0; y < h; y++)
for (x = 0; x < w; x++)
for (k = 0; k < n; k++)
*dp++ = *p++ ? 0xff : 0x00;
}
else if (pnm->maxval < 255)
{
for (y = 0; y < h; y++)
for (x = 0; x < w; x++)
for (k = 0; k < n; k++)
*dp++ = map_color(ctx, *p++, pnm->maxval, 255);
}
else
{
for (y = 0; y < h; y++)
for (x = 0; x < w; x++)
for (k = 0; k < n; k++)
{
*dp++ = map_color(ctx, (p[0] << 8) | p[1], pnm->maxval, 255);
p += 2;
}
}
if (pnm->alpha)
fz_premultiply_pixmap(ctx, img);
}
fz_catch(ctx)
{
fz_drop_pixmap(ctx, img);
fz_rethrow(ctx);
}
}
if (out)
*out = p;
return img;
}
static fz_pixmap *
pnm_read_image(fz_context *ctx, struct info *pnm, const unsigned char *p, size_t total, int onlymeta, int subimage)
{
const unsigned char *e = p + total;
char signature[3] = { 0 };
fz_pixmap *pix = NULL;
while (p < e && ((!onlymeta && subimage >= 0) || onlymeta))
{
int subonlymeta = onlymeta || (subimage > 0);
p = pnm_read_signature(ctx, p, e, signature);
p = pnm_read_white(ctx, p, e, 0);
if (!strcmp(signature, "P1"))
{
pnm->cs = fz_device_gray(ctx);
pix = pnm_ascii_read_image(ctx, pnm, p, e, subonlymeta, 1, &p);
}
else if (!strcmp(signature, "P2"))
{
pnm->cs = fz_device_gray(ctx);
pix = pnm_ascii_read_image(ctx, pnm, p, e, subonlymeta, 0, &p);
}
else if (!strcmp(signature, "P3"))
{
pnm->cs = fz_device_rgb(ctx);
pix = pnm_ascii_read_image(ctx, pnm, p, e, subonlymeta, 0, &p);
}
else if (!strcmp(signature, "P4"))
{
pnm->cs = fz_device_gray(ctx);
pix = pnm_binary_read_image(ctx, pnm, p, e, subonlymeta, 1, &p);
}
else if (!strcmp(signature, "P5"))
{
pnm->cs = fz_device_gray(ctx);
pix = pnm_binary_read_image(ctx, pnm, p, e, subonlymeta, 0, &p);
}
else if (!strcmp(signature, "P6"))
{
pnm->cs = fz_device_rgb(ctx);
pix = pnm_binary_read_image(ctx, pnm, p, e, subonlymeta, 0, &p);
}
else if (!strcmp(signature, "P7"))
pix = pam_binary_read_image(ctx, pnm, p, e, subonlymeta, &p);
else
fz_throw(ctx, FZ_ERROR_GENERIC, "unsupported portable anymap signature (0x%02x, 0x%02x)", signature[0], signature[1]);
if (onlymeta)
pnm->subimages++;
if (subimage >= 0)
subimage--;
}
if (p >= e && subimage >= 0)
fz_throw(ctx, FZ_ERROR_GENERIC, "subimage count out of range");
return pix;
}
fz_pixmap *
fz_load_pnm(fz_context *ctx, const unsigned char *p, size_t total)
{
struct info pnm = { 0 };
return pnm_read_image(ctx, &pnm, p, total, 0, 0);
}
void
fz_load_pnm_info(fz_context *ctx, const unsigned char *p, size_t total, int *wp, int *hp, int *xresp, int *yresp, fz_colorspace **cspacep)
{
struct info pnm = { 0 };
(void) pnm_read_image(ctx, &pnm, p, total, 1, 0);
*cspacep = fz_keep_colorspace(ctx, pnm.cs); /* pnm.cs is a borrowed device colorspace */
*wp = pnm.width;
*hp = pnm.height;
*xresp = 72;
*yresp = 72;
}
fz_pixmap *
fz_load_pnm_subimage(fz_context *ctx, const unsigned char *p, size_t total, int subimage)
{
struct info pnm = { 0 };
return pnm_read_image(ctx, &pnm, p, total, 0, subimage);
}
int
fz_load_pnm_subimage_count(fz_context *ctx, const unsigned char *p, size_t total)
{
struct info pnm = { 0 };
(void) pnm_read_image(ctx, &pnm, p, total, 1, -1);
return pnm.subimages;
}