eBookReaderSwitch/mupdf/source/fitz/strtof.c

466 lines
10 KiB
C

#include "mupdf/fitz.h"
#include <assert.h>
#include <errno.h>
#include <float.h>
#ifndef INFINITY
#define INFINITY (DBL_MAX+DBL_MAX)
#endif
#ifndef NAN
#define NAN (INFINITY-INFINITY)
#endif
/*
We use "Algorithm D" from "Contributions to a Proposed Standard for Binary
Floating-Point Arithmetic" by Jerome Coonen (1984).
The implementation uses a self-made floating point type, 'strtof_fp_t', with
a 32-bit significand. The steps of the algorithm are
INPUT: Up to 9 decimal digits d1, ... d9 and an exponent dexp.
OUTPUT: A float corresponding to the number d1 ... d9 * 10^dexp.
1) Convert the integer d1 ... d9 to an strtof_fp_t x.
2) Lookup the strtof_fp_t power = 10 ^ |dexp|.
3) If dexp is positive set x = x * power, else set x = x / power. Use rounding mode 'round to odd'.
4) Round x to a float using rounding mode 'to even'.
Step 1) is always lossless as the strtof_fp_t's significand can hold a 9-digit integer.
In the case |dexp| <= 13 the cached power is exact and the algorithm returns
the exactly rounded result (with rounding mode 'to even').
There is no double-rounding in 3), 4) as the multiply/divide uses 'round to odd'.
For |dexp| > 13 the maximum error is bounded by (1/2 + 1/256) ulp.
This is small enough to ensure that binary to decimal to binary conversion
is the identity if the decimal format uses 9 correctly rounded significant digits.
*/
typedef struct strtof_fp_t
{
uint32_t f;
int e;
} strtof_fp_t;
/* Multiply/Divide x by y with 'round to odd'. Assume that x and y are normalized. */
static strtof_fp_t
strtof_multiply(strtof_fp_t x, strtof_fp_t y)
{
uint64_t tmp;
strtof_fp_t res;
assert(x.f & y.f & 0x80000000);
res.e = x.e + y.e + 32;
tmp = (uint64_t) x.f * y.f;
/* Normalize. */
if ((tmp < ((uint64_t) 1 << 63)))
{
tmp <<= 1;
--res.e;
}
res.f = tmp >> 32;
/* Set the last bit of the significand to 1 if the result is
inexact. */
if (tmp & 0xffffffff)
res.f |= 1;
return res;
}
static strtof_fp_t
divide(strtof_fp_t x, strtof_fp_t y)
{
uint64_t product, quotient;
uint32_t remainder;
strtof_fp_t res;
res.e = x.e - y.e - 32;
product = (uint64_t) x.f << 32;
quotient = product / y.f;
remainder = product % y.f;
/* 2^31 <= quotient <= 2^33 - 2. */
if (quotient <= 0xffffffff)
res.f = quotient;
else
{
++res.e;
/* If quotient % 2 != 0 we have remainder != 0. */
res.f = quotient >> 1;
}
if (remainder)
res.f |= 1;
return res;
}
/* From 10^0 to 10^54. Generated with GNU MPFR. */
static const uint32_t strtof_powers_ten[55] = {
0x80000000, 0xa0000000, 0xc8000000, 0xfa000000, 0x9c400000, 0xc3500000,
0xf4240000, 0x98968000, 0xbebc2000, 0xee6b2800, 0x9502f900, 0xba43b740,
0xe8d4a510, 0x9184e72a, 0xb5e620f4, 0xe35fa932, 0x8e1bc9bf, 0xb1a2bc2f,
0xde0b6b3a, 0x8ac72305, 0xad78ebc6, 0xd8d726b7, 0x87867832, 0xa968163f,
0xd3c21bcf, 0x84595161, 0xa56fa5ba, 0xcecb8f28, 0x813f3979, 0xa18f07d7,
0xc9f2c9cd, 0xfc6f7c40, 0x9dc5ada8, 0xc5371912, 0xf684df57, 0x9a130b96,
0xc097ce7c, 0xf0bdc21b, 0x96769951, 0xbc143fa5, 0xeb194f8e, 0x92efd1b9,
0xb7abc627, 0xe596b7b1, 0x8f7e32ce, 0xb35dbf82, 0xe0352f63, 0x8c213d9e,
0xaf298d05, 0xdaf3f046, 0x88d8762c, 0xab0e93b7, 0xd5d238a5, 0x85a36367,
0xa70c3c41
};
static const int strtof_powers_ten_e[55] = {
-31, -28, -25, -22, -18, -15, -12, -8, -5, -2,
2, 5, 8, 12, 15, 18, 22, 25, 28, 32, 35, 38, 42, 45, 48, 52, 55, 58, 62, 65,
68, 71, 75, 78, 81, 85, 88, 91, 95, 98, 101, 105, 108, 111, 115, 118, 121,
125, 128, 131, 135, 138, 141, 145, 148
};
static strtof_fp_t
strtof_cached_power(int i)
{
strtof_fp_t result;
assert (i >= 0 && i <= 54);
result.f = strtof_powers_ten[i];
result.e = strtof_powers_ten_e[i];
return result;
}
/* Find number of leading zero bits in an uint32_t. Derived from the
"Bit Twiddling Hacks" at graphics.stanford.edu/~seander/bithacks.html. */
static unsigned char clz_table[256] = {
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
# define sixteen_times(N) N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
sixteen_times (3) sixteen_times (2) sixteen_times (2)
sixteen_times (1) sixteen_times (1) sixteen_times (1) sixteen_times (1)
/* Zero for the rest. */
};
static unsigned
leading_zeros (uint32_t x)
{
unsigned tmp1, tmp2;
tmp1 = x >> 16;
if (tmp1)
{
tmp2 = tmp1 >> 8;
if (tmp2)
return clz_table[tmp2];
else
return 8 + clz_table[tmp1];
}
else
{
tmp1 = x >> 8;
if (tmp1)
return 16 + clz_table[tmp1];
else
return 24 + clz_table[x];
}
}
static strtof_fp_t
uint32_to_diy (uint32_t x)
{
strtof_fp_t result = {x, 0};
unsigned shift = leading_zeros(x);
result.f <<= shift;
result.e -= shift;
return result;
}
#define SP_SIGNIFICAND_SIZE 23
#define SP_EXPONENT_BIAS (127 + SP_SIGNIFICAND_SIZE)
#define SP_MIN_EXPONENT (-SP_EXPONENT_BIAS)
#define SP_EXPONENT_MASK 0x7f800000
#define SP_SIGNIFICAND_MASK 0x7fffff
#define SP_HIDDEN_BIT 0x800000 /* 2^23 */
/* Convert normalized strtof_fp_t to IEEE-754 single with 'round to even'.
See "Implementing IEEE 754-2008 Rounding" in the
"Handbook of Floating-Point Arithmetik".
*/
static float
diy_to_float(strtof_fp_t x, int negative)
{
uint32_t result;
union
{
float f;
uint32_t n;
} tmp;
assert(x.f & 0x80000000);
/* We have 2^32 - 2^7 = 0xffffff80. */
if (x.e > 96 || (x.e == 96 && x.f >= 0xffffff80))
{
/* Overflow. Set result to infinity. */
errno = ERANGE;
result = 0xff << SP_SIGNIFICAND_SIZE;
}
/* We have 2^32 - 2^8 = 0xffffff00. */
else if (x.e > -158)
{
/* x is greater or equal to FLT_MAX. So we get a normalized number. */
result = (uint32_t) (x.e + 158) << SP_SIGNIFICAND_SIZE;
result |= (x.f >> 8) & SP_SIGNIFICAND_MASK;
if (x.f & 0x80)
{
/* Round-bit is set. */
if (x.f & 0x7f)
/* Sticky-bit is set. */
++result;
else if (x.f & 0x100)
/* Significand is odd. */
++result;
}
}
else if (x.e == -158 && x.f >= 0xffffff00)
{
/* x is in the range (2^32, 2^32 - 2^8] * 2^-158, so its smaller than
FLT_MIN but still rounds to it. */
result = 1U << SP_SIGNIFICAND_SIZE;
}
else if (x.e > -181)
{
/* Non-zero Denormal. */
int shift = -149 - x.e; /* 9 <= shift <= 31. */
result = x.f >> shift;
if (x.f & (1U << (shift - 1)))
/* Round-bit is set. */
{
if (x.f & ((1U << (shift - 1)) - 1))
/* Sticky-bit is set. */
++result;
else if (x.f & 1U << shift)
/* Significand is odd. */
++result;
}
}
else if (x.e == -181 && x.f > 0x80000000)
{
/* x is in the range (0.5,1) * 2^-149 so it rounds to the smallest
denormal. Can't handle this in the previous case as shifting a
uint32_t 32 bits to the right is undefined behaviour. */
result = 1;
}
else
{
/* Underflow. */
errno = ERANGE;
result = 0;
}
if (negative)
result |= 0x80000000;
tmp.n = result;
return tmp.f;
}
static float
scale_integer_to_float(uint32_t M, int N, int negative)
{
strtof_fp_t result, x, power;
if (M == 0)
return negative ? -0.f : 0.f;
if (N > 38)
{
/* Overflow. */
errno = ERANGE;
return negative ? -INFINITY : INFINITY;
}
if (N < -54)
{
/* Underflow. */
errno = ERANGE;
return negative ? -0.f : 0.f;
}
/* If N is in the range {-13, ..., 13} the conversion is exact.
Try to scale N into this region. */
while (N > 13 && M <= 0xffffffff / 10)
{
M *= 10;
--N;
}
while (N < -13 && M % 10 == 0)
{
M /= 10;
++N;
}
x = uint32_to_diy (M);
if (N >= 0)
{
power = strtof_cached_power(N);
result = strtof_multiply(x, power);
}
else
{
power = strtof_cached_power(-N);
result = divide(x, power);
}
return diy_to_float(result, negative);
}
/* Return non-zero if *s starts with string (must be uppercase), ignoring case,
and increment *s by its length. */
static int
starts_with(const char **s, const char *string)
{
const char *x = *s, *y = string;
while (*x && *y && (*x == *y || *x == *y + 32))
++x, ++y;
if (*y == 0)
{
/* Match. */
*s = x;
return 1;
}
else
return 0;
}
#define SET_TAILPTR(tailptr, s) \
do \
if (tailptr) \
*tailptr = (char *) s; \
while (0)
/*
Locale-independent decimal to binary
conversion. On overflow return (-)INFINITY and set errno to ERANGE. On
underflow return 0 and set errno to ERANGE. Special inputs (case
insensitive): "NAN", "INF" or "INFINITY".
*/
float
fz_strtof(const char *string, char **tailptr)
{
/* FIXME: error (1/2 + 1/256) ulp */
const char *s;
uint32_t M = 0;
int N = 0;
/* If decimal_digits gets 9 we truncate all following digits. */
int decimal_digits = 0;
int negative = 0;
const char *number_start = 0;
/* Skip leading whitespace (isspace in "C" locale). */
s = string;
while (*s == ' ' || *s == '\f' || *s == '\n' || *s == '\r' || *s == '\t' || *s == '\v')
++s;
/* Parse sign. */
if (*s == '+')
++s;
if (*s == '-')
{
negative = 1;
++s;
}
number_start = s;
/* Parse digits before decimal point. */
while (*s >= '0' && *s <= '9')
{
if (decimal_digits)
{
if (decimal_digits < 9)
{
++decimal_digits;
M = M * 10 + *s - '0';
}
/* Really arcane strings might overflow N. */
else if (N < 1000)
++N;
}
else if (*s > '0')
{
M = *s - '0';
++decimal_digits;
}
++s;
}
/* Parse decimal point. */
if (*s == '.')
++s;
/* Parse digits after decimal point. */
while (*s >= '0' && *s <= '9')
{
if (decimal_digits < 9)
{
if (decimal_digits || *s > '0')
{
++decimal_digits;
M = M * 10 + *s - '0';
}
--N;
}
++s;
}
if ((s == number_start + 1 && *number_start == '.') || number_start == s)
{
/* No Number. Check for INF and NAN strings. */
s = number_start;
if (starts_with(&s, "INFINITY") || starts_with(&s, "INF"))
{
errno = ERANGE;
SET_TAILPTR(tailptr, s);
return negative ? -INFINITY : +INFINITY;
}
else if (starts_with(&s, "NAN"))
{
SET_TAILPTR(tailptr, s);
return (float)NAN;
}
else
{
SET_TAILPTR(tailptr, string);
return 0.f;
}
}
/* Parse exponent. */
if (*s == 'e' || *s == 'E')
{
int exp_negative = 0;
int exp = 0;
const char *int_start;
const char *exp_start = s;
++s;
if (*s == '+')
++s;
else if (*s == '-')
{
++s;
exp_negative = 1;
}
int_start = s;
/* Parse integer. */
while (*s >= '0' && *s <= '9')
{
/* Make sure exp does not get overflowed. */
if (exp < 100)
exp = exp * 10 + *s - '0';
++s;
}
if (exp_negative)
exp = -exp;
if (s == int_start)
/* No Number. */
s = exp_start;
else
N += exp;
}
SET_TAILPTR(tailptr, s);
return scale_integer_to_float(M, N, negative);
}