eBookReaderSwitch/mupdf/thirdparty/freeglut/src/fg_teapot.c

571 lines
24 KiB
C
Raw Blame History

/*
* fg_teapot.c
*
* Teapot(tm) rendering code.
*
* Copyright (c) 1999-2000 Pawel W. Olszta. All Rights Reserved.
* Written by Pawel W. Olszta, <olszta@sourceforge.net>
* Creation date: Fri Dec 24 1999
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* PAWEL W. OLSZTA BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* notes:
* the (very little) required math is found here: http://www.gamasutra.com/view/feature/131848/tessellation_of_4x4_bezier_patches_.php?print=1
* a much more optimized version is here, didn't bother to implement that: http://www.gamasutra.com/view/feature/131794/an_indepth_look_at_bicubic_bezier_.php?print=1
*/
#include <GL/freeglut.h>
#include "fg_internal.h"
#include "fg_teapot_data.h"
/* -- STATIC VARS: CACHES ---------------------------------------------------- */
/* General defs */
#define GLUT_SOLID_N_SUBDIV 8
#define GLUT_WIRE_N_SUBDIV 10
/* Bernstein coefficients only have to be precomputed once (number of patch subdivisions is fixed)
* Can thus define arrays for them here, they will be filled upon first use.
* 3rd order Bezier surfaces have 4 Bernstein coeffs.
* Have separate caches for solid and wire as they use a different number of subdivisions
* _0 is for Bernstein polynomials, _1 for their first derivative (which we need for normals)
*/
static GLfloat bernWire_0 [GLUT_WIRE_N_SUBDIV] [4];
static GLfloat bernWire_1 [GLUT_WIRE_N_SUBDIV] [4];
static GLfloat bernSolid_0[GLUT_SOLID_N_SUBDIV][4];
static GLfloat bernSolid_1[GLUT_SOLID_N_SUBDIV][4];
/* Teapot defs */
#define GLUT_TEAPOT_N_PATCHES (6*4 + 4*2) /* 6 patches are reproduced (rotated) 4 times, 4 patches (flipped) 2 times */
#define GLUT_SOLID_TEAPOT_N_VERT GLUT_SOLID_N_SUBDIV*GLUT_SOLID_N_SUBDIV * GLUT_TEAPOT_N_PATCHES /* N_SUBDIV^2 vertices per patch */
#define GLUT_SOLID_TEAPOT_N_TRI (GLUT_SOLID_N_SUBDIV-1)*(GLUT_SOLID_N_SUBDIV-1) * GLUT_TEAPOT_N_PATCHES * 2 /* if e.g. 7x7 vertices for each patch, there are 6*6 squares for each patch. Each square is decomposed into 2 triangles */
#define GLUT_WIRE_TEAPOT_N_VERT GLUT_WIRE_N_SUBDIV*GLUT_WIRE_N_SUBDIV * GLUT_TEAPOT_N_PATCHES /* N_SUBDIV^2 vertices per patch */
/* Bit of caching:
* vertex indices and normals only need to be generated once for
* a given number of subdivisions as they don't change with scale.
* Vertices can be cached and reused if scale didn't change.
*/
static GLushort vertIdxsTeapotS[GLUT_SOLID_TEAPOT_N_TRI*3];
static GLfloat normsTeapotS [GLUT_SOLID_TEAPOT_N_VERT*3];
static GLfloat vertsTeapotS [GLUT_SOLID_TEAPOT_N_VERT*3];
static GLfloat texcsTeapotS [GLUT_SOLID_TEAPOT_N_VERT*2];
static GLfloat lastScaleTeapotS = 0.f;
static GLboolean initedTeapotS = GL_FALSE;
static GLushort vertIdxsTeapotW[GLUT_WIRE_TEAPOT_N_VERT*2];
static GLfloat normsTeapotW [GLUT_WIRE_TEAPOT_N_VERT*3];
static GLfloat vertsTeapotW [GLUT_WIRE_TEAPOT_N_VERT*3];
static GLfloat lastScaleTeapotW = 0.f;
static GLboolean initedTeapotW = GL_FALSE;
/* Teacup defs */
#define GLUT_TEACUP_N_PATCHES (6*4 + 1*2) /* 6 patches are reproduced (rotated) 4 times, 1 patch (flipped) 2 times */
#define GLUT_SOLID_TEACUP_N_VERT GLUT_SOLID_N_SUBDIV*GLUT_SOLID_N_SUBDIV * GLUT_TEACUP_N_PATCHES /* N_SUBDIV^2 vertices per patch */
#define GLUT_SOLID_TEACUP_N_TRI (GLUT_SOLID_N_SUBDIV-1)*(GLUT_SOLID_N_SUBDIV-1) * GLUT_TEACUP_N_PATCHES * 2 /* if e.g. 7x7 vertices for each patch, there are 6*6 squares for each patch. Each square is decomposed into 2 triangles */
#define GLUT_WIRE_TEACUP_N_VERT GLUT_WIRE_N_SUBDIV*GLUT_WIRE_N_SUBDIV * GLUT_TEACUP_N_PATCHES /* N_SUBDIV^2 vertices per patch */
/* Bit of caching:
* vertex indices and normals only need to be generated once for
* a given number of subdivisions as they don't change with scale.
* Vertices can be cached and reused if scale didn't change.
*/
static GLushort vertIdxsTeacupS[GLUT_SOLID_TEACUP_N_TRI*3];
static GLfloat normsTeacupS [GLUT_SOLID_TEACUP_N_VERT*3];
static GLfloat vertsTeacupS [GLUT_SOLID_TEACUP_N_VERT*3];
static GLfloat texcsTeacupS [GLUT_SOLID_TEACUP_N_VERT*2];
static GLfloat lastScaleTeacupS = 0.f;
static GLboolean initedTeacupS = GL_FALSE;
static GLushort vertIdxsTeacupW[GLUT_WIRE_TEACUP_N_VERT*2];
static GLfloat normsTeacupW [GLUT_WIRE_TEACUP_N_VERT*3];
static GLfloat vertsTeacupW [GLUT_WIRE_TEACUP_N_VERT*3];
static GLfloat lastScaleTeacupW = 0.f;
static GLboolean initedTeacupW = GL_FALSE;
/* Teaspoon defs */
#define GLUT_TEASPOON_N_PATCHES GLUT_TEASPOON_N_INPUT_PATCHES
#define GLUT_SOLID_TEASPOON_N_VERT GLUT_SOLID_N_SUBDIV*GLUT_SOLID_N_SUBDIV * GLUT_TEASPOON_N_PATCHES /* N_SUBDIV^2 vertices per patch */
#define GLUT_SOLID_TEASPOON_N_TRI (GLUT_SOLID_N_SUBDIV-1)*(GLUT_SOLID_N_SUBDIV-1) * GLUT_TEASPOON_N_PATCHES * 2 /* if e.g. 7x7 vertices for each patch, there are 6*6 squares for each patch. Each square is decomposed into 2 triangles */
#define GLUT_WIRE_TEASPOON_N_VERT GLUT_WIRE_N_SUBDIV*GLUT_WIRE_N_SUBDIV * GLUT_TEASPOON_N_PATCHES /* N_SUBDIV^2 vertices per patch */
/* Bit of caching:
* vertex indices and normals only need to be generated once for
* a given number of subdivisions as they don't change with scale.
* Vertices can be cached and reused if scale didn't change.
*/
static GLushort vertIdxsTeaspoonS[GLUT_SOLID_TEASPOON_N_TRI*3];
static GLfloat normsTeaspoonS [GLUT_SOLID_TEASPOON_N_VERT*3];
static GLfloat vertsTeaspoonS [GLUT_SOLID_TEASPOON_N_VERT*3];
static GLfloat texcsTeaspoonS [GLUT_SOLID_TEASPOON_N_VERT*2];
static GLfloat lastScaleTeaspoonS = 0.f;
static GLboolean initedTeaspoonS = GL_FALSE;
static GLushort vertIdxsTeaspoonW[GLUT_WIRE_TEASPOON_N_VERT*2];
static GLfloat normsTeaspoonW [GLUT_WIRE_TEASPOON_N_VERT*3];
static GLfloat vertsTeaspoonW [GLUT_WIRE_TEASPOON_N_VERT*3];
static GLfloat lastScaleTeaspoonW = 0.f;
static GLboolean initedTeaspoonW = GL_FALSE;
/* -- PRIVATE FUNCTIONS ---------------------------------------------------- */
extern void fghDrawGeometrySolid(GLfloat *vertices, GLfloat *normals, GLfloat *textcs, GLsizei numVertices,
GLushort *vertIdxs, GLsizei numParts, GLsizei numVertIdxsPerPart);
extern void fghDrawGeometryWire(GLfloat *vertices, GLfloat *normals, GLsizei numVertices,
GLushort *vertIdxs, GLsizei numParts, GLsizei numVertPerPart, GLenum vertexMode,
GLushort *vertIdxs2, GLsizei numParts2, GLsizei numVertPerPart2);
/* evaluate 3rd order Bernstein polynomial and its 1st deriv */
static void bernstein3(int i, GLfloat x, GLfloat *r0, GLfloat *r1)
{
float invx = 1.f - x;
/* r0: zero order coeff, r1: first deriv coeff */
switch (i)
{
GLfloat temp;
case 0:
temp = invx*invx;
*r0 = invx * temp; /* invx * invx * invx */
*r1 = -3 * temp; /* -3 * invx * invx */
break;
case 1:
temp = invx*invx;
*r0 = 3 * x * temp; /* 3 * x * invx * invx */
*r1 = 3 * temp - 6 * x * invx; /* 3 * invx * invx - 6 * x * invx */
break;
case 2:
temp = x*x;
*r0 = 3 * temp * invx; /* 3 * x * x * invx */
*r1 = 6 * x * invx - 3 * temp; /* 6 * x * invx - 3 * x * x */
break;
case 3:
temp = x*x;
*r0 = x * temp; /* x * x * x */
*r1 = 3 * temp; /* 3 * x * x */
break;
default:
*r0 = *r1 = 0;
}
}
static void pregenBernstein(int nSubDivs, GLfloat (*bern_0)[4], GLfloat (*bern_1)[4])
{
int s,i;
for (s=0; s<nSubDivs; s++)
{
GLfloat x = s/(nSubDivs-1.f);
for (i=0; i<4; i++) /* 3rd order polynomial */
bernstein3(i,x,bern_0[s]+i,bern_1[s]+i);
}
}
/* based on flag either rotate patches around y axis to other 3 quadrants (flag=4) or reflect patch across x-y plane (flag=2) */
static void rotOrReflect(int flag, int nVals, int nSubDivs, GLfloat *vals)
{
int u,i,o;
if (flag==4)
{
int i1=nVals, i2=nVals*2, i3=nVals*3;
for (o=0; o<nVals; o+=3)
{
/* 90<39> rotation */
vals[i1+o+0] = vals[o+2];
vals[i1+o+1] = vals[o+1];
vals[i1+o+2] = -vals[o+0];
/* 180<38> rotation */
vals[i2+o+0] = -vals[o+0];
vals[i2+o+1] = vals[o+1];
vals[i2+o+2] = -vals[o+2];
/* 270<37> rotation */
vals[i3+o+0] = -vals[o+2];
vals[i3+o+1] = vals[o+1];
vals[i3+o+2] = vals[o+0];
}
}
else if (flag==2)
{
/* copy over values, reversing row order to keep winding correct, and negating z to perform the flip */
for (u=0; u<nSubDivs; u++) /* per row */
{
int off = (nSubDivs-u-1)*nSubDivs*3; /* read last row first from the already existing rows */
o = nVals + u *nSubDivs*3; /* write last row as first row to output */
for (i=0; i<nSubDivs*3; i+=3, o+=3) /* each row has nSubDivs points consisting of three values */
{
vals[o+0] = vals[off+i+0];
vals[o+1] = vals[off+i+1];
vals[o+2] = -vals[off+i+2];
}
}
}
}
/* verts array should be initialized to 0! */
static int evalBezierWithNorm(GLfloat cp[4][4][3], int nSubDivs, float (*bern_0)[4], float (*bern_1)[4], int flag, int normalFix, GLfloat *verts, GLfloat *norms)
{
int nVerts = nSubDivs*nSubDivs;
int nVertVals = nVerts*3; /* number of values output for one patch, flag (2 or 4) indicates how many times we will write this to output */
int u,v,i,j,o;
/* generate vertices and coordinates for the patch */
for (u=0,o=0; u<nSubDivs; u++)
{
for (v=0; v<nSubDivs; v++, o+=3)
{
/* for normals, get two tangents at the vertex using partial derivatives of 2D Bezier grid */
float tan1[3]={0}, tan2[3]={0}, len;
for (i=0; i<=3; i++)
{
float vert_0[3]={0}, vert_1[3]={0};
for (j=0; j<=3; j++)
{
vert_0[0] += bern_0[v][j] * cp[i][j][0];
vert_0[1] += bern_0[v][j] * cp[i][j][1];
vert_0[2] += bern_0[v][j] * cp[i][j][2];
vert_1[0] += bern_1[v][j] * cp[i][j][0];
vert_1[1] += bern_1[v][j] * cp[i][j][1];
vert_1[2] += bern_1[v][j] * cp[i][j][2];
}
verts[o+0] += bern_0[u][i]*vert_0[0];
verts[o+1] += bern_0[u][i]*vert_0[1];
verts[o+2] += bern_0[u][i]*vert_0[2];
tan1[0] += bern_0[u][i]*vert_1[0];
tan1[1] += bern_0[u][i]*vert_1[1];
tan1[2] += bern_0[u][i]*vert_1[2];
tan2[0] += bern_1[u][i]*vert_0[0];
tan2[1] += bern_1[u][i]*vert_0[1];
tan2[2] += bern_1[u][i]*vert_0[2];
}
/* get normal through cross product of the two tangents of the vertex */
norms[o+0] = tan1[1] * tan2[2] - tan1[2] * tan2[1];
norms[o+1] = tan1[2] * tan2[0] - tan1[0] * tan2[2];
norms[o+2] = tan1[0] * tan2[1] - tan1[1] * tan2[0];
len = (GLfloat)sqrt(norms[o+0] * norms[o+0] + norms[o+1] * norms[o+1] + norms[o+2] * norms[o+2]);
norms[o+0] /= len;
norms[o+1] /= len;
norms[o+2] /= len;
}
}
/* Fix normal vector if needed */
if (normalFix)
{
for (o=0; o<nSubDivs*3; o+=3) /* whole first row (first nSubDivs normals) is broken: replace normals for the whole row */
{
norms[o+0] = 0.f;
norms[o+1] = normalFix==1? 1.f:-1.f;
norms[o+2] = 0.f;
}
}
/* now based on flag either rotate patches around y axis to other 3 quadrants (flag=4) or reflect patch across x-y plane (flag=2) */
rotOrReflect(flag, nVertVals, nSubDivs, verts);
rotOrReflect(flag, nVertVals, nSubDivs, norms);
return nVertVals*flag;
}
/* verts array should be initialized to 0! */
static int evalBezier(GLfloat cp[4][4][3], int nSubDivs, float (*bern_0)[4], int flag, GLfloat *verts)
{
int nVerts = nSubDivs*nSubDivs;
int nVertVals = nVerts*3; /* number of values output for one patch, flag (2 or 4) indicates how many times we will write this to output */
int u,v,i,j,o;
/* generate vertices and coordinates for the patch */
for (u=0,o=0; u<nSubDivs; u++)
{
for (v=0; v<nSubDivs; v++, o+=3)
{
for (i=0; i<=3; i++)
{
float vert_0[3]={0};
for (j=0; j<=3; j++)
{
vert_0[0] += bern_0[v][j] * cp[i][j][0];
vert_0[1] += bern_0[v][j] * cp[i][j][1];
vert_0[2] += bern_0[v][j] * cp[i][j][2];
}
verts[o+0] += bern_0[u][i]*vert_0[0];
verts[o+1] += bern_0[u][i]*vert_0[1];
verts[o+2] += bern_0[u][i]*vert_0[2];
}
}
}
/* now based on flag either rotate patches around y axis to other 3 quadrants (flag=4) or reflect patch across x-y plane (flag=2) */
rotOrReflect(flag, nVertVals, nSubDivs, verts);
return nVertVals*flag;
}
static void fghTeaset( GLfloat scale, GLboolean useWireMode,
GLfloat (*cpdata)[3], int (*patchdata)[16],
GLushort *vertIdxs,
GLfloat *verts, GLfloat *norms, GLfloat *texcs,
GLfloat *lastScale, GLboolean *inited,
GLboolean needNormalFix, GLboolean rotFlip, GLfloat zOffset,
int nVerts, int nInputPatches, int nPatches, int nTriangles )
{
/* for internal use */
int p,o;
GLfloat cp[4][4][3];
/* to hold pointers to static vars/arrays */
GLfloat (*bern_0)[4], (*bern_1)[4];
int nSubDivs;
/* Get relevant static arrays and variables */
bern_0 = useWireMode ? bernWire_0 : bernSolid_0;
bern_1 = useWireMode ? bernWire_1 : bernSolid_1;
nSubDivs = useWireMode ? GLUT_WIRE_N_SUBDIV : GLUT_SOLID_N_SUBDIV;
/* check if need to generate vertices */
if (!*inited || scale != *lastScale)
{
/* set vertex array to all 0 (not necessary for normals and vertex indices) */
memset(verts,0,nVerts*3*sizeof(GLfloat));
/* pregen Berstein polynomials and their first derivatives (for normals) */
if (!*inited)
pregenBernstein(nSubDivs,bern_0,bern_1);
/* generate vertices and normals */
for (p=0, o=0; p<nInputPatches; p++)
{
/* set flags for evalBezier function */
int flag = rotFlip?p<6?4:2:1; /* For teapot and teacup, first six patches get 3 copies (rotations), others get 2 copies (flips). No rotating or flipping at all for teaspoon */
int normalFix = needNormalFix?p==3?1:p==5?2:0:0; /* For teapot, fix normal vectors for vertices on top of lid (patch 4) and on middle of bottom (patch 6). Different flag value as different normal needed */
/* collect control points */
int i;
for (i=0; i<16; i++)
{
/* Original code draws with a 270<37> rot around X axis, a scaling and a translation along the Z-axis.
* Incorporating these in the control points is much cheaper than transforming all the vertices.
* Original:
* glRotated( 270.0, 1.0, 0.0, 0.0 );
* glScaled( 0.5 * scale, 0.5 * scale, 0.5 * scale );
* glTranslated( 0.0, 0.0, -zOffset ); -> was 1.5 for teapot, but should be 1.575 to center it on the Z axis. Teacup and teaspoon have different offsets
*/
cp[i/4][i%4][0] = cpdata[patchdata[p][i]][0] *scale/2.f;
cp[i/4][i%4][1] = (cpdata[patchdata[p][i]][2]-zOffset)*scale/2.f;
cp[i/4][i%4][2] = -cpdata[patchdata[p][i]][1] *scale/2.f;
}
/* eval bezier patch */
if (!*inited) /* first time, generate normals as well */
o += evalBezierWithNorm(cp,nSubDivs,bern_0,bern_1, flag, normalFix, verts+o,norms+o);
else /* only need to regen vertices */
o += evalBezier(cp,nSubDivs,bern_0, flag, verts+o);
}
*lastScale = scale;
if (!*inited)
{
int r,c;
/* generate texture coordinates if solid teapot/teacup/teaspoon */
if (!useWireMode)
{
/* generate for first patch */
for (r=0,o=0; r<nSubDivs; r++)
{
GLfloat u = r/(nSubDivs-1.f);
for (c=0; c<nSubDivs; c++, o+=2)
{
GLfloat v = c/(nSubDivs-1.f);
texcs[o+0] = u;
texcs[o+1] = v;
}
}
/* copy it over for all the other patches */
for (p=1; p<nPatches; p++)
memcpy(texcs+p*nSubDivs*nSubDivs*2,texcs,nSubDivs*nSubDivs*2*sizeof(GLfloat));
}
/* build vertex index array */
if (useWireMode)
{
/* build vertex indices to draw teapot/teacup/teaspoon as line strips */
/* first strips along increasing u, constant v */
for (p=0, o=0; p<nPatches; p++)
{
int idx = nSubDivs*nSubDivs*p;
for (c=0; c<nSubDivs; c++)
for (r=0; r<nSubDivs; r++, o++)
vertIdxs[o] = idx+r*nSubDivs+c;
}
/* then strips along increasing v, constant u */
for (p=0; p<nPatches; p++) /* don't reset o, we continue appending! */
{
int idx = nSubDivs*nSubDivs*p;
for (r=0; r<nSubDivs; r++)
{
int loc = r*nSubDivs;
for (c=0; c<nSubDivs; c++, o++)
vertIdxs[o] = idx+loc+c;
}
}
}
else
{
/* build vertex indices to draw teapot/teacup/teaspoon as triangles */
for (p=0,o=0; p<nPatches; p++)
{
int idx = nSubDivs*nSubDivs*p;
for (r=0; r<nSubDivs-1; r++)
{
int loc = r*nSubDivs;
for (c=0; c<nSubDivs-1; c++, o+=6)
{
/* ABC ACD, where B and C are one row lower */
int row1 = idx+loc+c;
int row2 = row1+nSubDivs;
vertIdxs[o+0] = row1+0;
vertIdxs[o+1] = row2+0;
vertIdxs[o+2] = row2+1;
vertIdxs[o+3] = row1+0;
vertIdxs[o+4] = row2+1;
vertIdxs[o+5] = row1+1;
}
}
}
}
*inited = GL_TRUE;
}
}
/* draw */
if (useWireMode)
fghDrawGeometryWire (verts, norms, nVerts, vertIdxs, nPatches*nSubDivs*2, nSubDivs, GL_LINE_STRIP, NULL,0,0);
else
fghDrawGeometrySolid(verts, norms, texcs, nVerts, vertIdxs,1,nTriangles*3);
}
/* -- INTERFACE FUNCTIONS -------------------------------------------------- */
/*
* Renders a wired teapot...
*/
void FGAPIENTRY glutWireTeapot( double size )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireTeapot" );
fghTeaset( (GLfloat)size, GL_TRUE,
cpdata_teapot, patchdata_teapot,
vertIdxsTeapotW,
vertsTeapotW, normsTeapotW, NULL,
&lastScaleTeapotW, &initedTeapotW,
GL_TRUE, GL_TRUE, 1.575f,
GLUT_WIRE_TEAPOT_N_VERT, GLUT_TEAPOT_N_INPUT_PATCHES, GLUT_TEAPOT_N_PATCHES, 0);
}
/*
* Renders a filled teapot...
*/
void FGAPIENTRY glutSolidTeapot( double size )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidTeapot" );
fghTeaset( (GLfloat)size, GL_FALSE,
cpdata_teapot, patchdata_teapot,
vertIdxsTeapotS,
vertsTeapotS, normsTeapotS, texcsTeapotS,
&lastScaleTeapotS, &initedTeapotS,
GL_TRUE, GL_TRUE, 1.575f,
GLUT_SOLID_TEAPOT_N_VERT, GLUT_TEAPOT_N_INPUT_PATCHES, GLUT_TEAPOT_N_PATCHES, GLUT_SOLID_TEAPOT_N_TRI);
}
/*
* Renders a wired teacup...
*/
void FGAPIENTRY glutWireTeacup( double size )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireTeacup" );
fghTeaset( (GLfloat)size/2.5f, GL_TRUE,
cpdata_teacup, patchdata_teacup,
vertIdxsTeacupW,
vertsTeacupW, normsTeacupW, NULL,
&lastScaleTeacupW, &initedTeacupW,
GL_FALSE, GL_TRUE, 1.5121f,
GLUT_WIRE_TEACUP_N_VERT, GLUT_TEACUP_N_INPUT_PATCHES, GLUT_TEACUP_N_PATCHES, 0);
}
/*
* Renders a filled teacup...
*/
void FGAPIENTRY glutSolidTeacup( double size )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidTeacup" );
fghTeaset( (GLfloat)size/2.5f, GL_FALSE,
cpdata_teacup, patchdata_teacup,
vertIdxsTeacupS,
vertsTeacupS, normsTeacupS, texcsTeacupS,
&lastScaleTeacupS, &initedTeacupS,
GL_FALSE, GL_TRUE, 1.5121f,
GLUT_SOLID_TEACUP_N_VERT, GLUT_TEACUP_N_INPUT_PATCHES, GLUT_TEACUP_N_PATCHES, GLUT_SOLID_TEACUP_N_TRI);
}
/*
* Renders a wired teaspoon...
*/
void FGAPIENTRY glutWireTeaspoon( double size )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireTeaspoon" );
fghTeaset( (GLfloat)size/2.5f, GL_TRUE,
cpdata_teaspoon, patchdata_teaspoon,
vertIdxsTeaspoonW,
vertsTeaspoonW, normsTeaspoonW, NULL,
&lastScaleTeaspoonW, &initedTeaspoonW,
GL_FALSE, GL_FALSE, -0.0315f,
GLUT_WIRE_TEASPOON_N_VERT, GLUT_TEASPOON_N_INPUT_PATCHES, GLUT_TEASPOON_N_PATCHES, 0);
}
/*
* Renders a filled teaspoon...
*/
void FGAPIENTRY glutSolidTeaspoon( double size )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidTeaspoon" );
fghTeaset( (GLfloat)size/2.5f, GL_FALSE,
cpdata_teaspoon, patchdata_teaspoon,
vertIdxsTeaspoonS,
vertsTeaspoonS, normsTeaspoonS, texcsTeaspoonS,
&lastScaleTeaspoonS, &initedTeaspoonS,
GL_FALSE, GL_FALSE, -0.0315f,
GLUT_SOLID_TEASPOON_N_VERT, GLUT_TEASPOON_N_INPUT_PATCHES, GLUT_TEASPOON_N_PATCHES, GLUT_SOLID_TEASPOON_N_TRI);
}
/*** END OF FILE ***/