#include "mupdf/fitz.h" #include "fitz-imp.h" #include struct fz_halftone_s { int refs; int n; fz_pixmap *comp[1]; }; static fz_halftone * fz_new_halftone(fz_context *ctx, int comps) { fz_halftone *ht; int i; ht = Memento_label(fz_malloc(ctx, sizeof(fz_halftone) + (comps-1)*sizeof(fz_pixmap *)), "fz_halftone"); ht->refs = 1; ht->n = comps; for (i = 0; i < comps; i++) ht->comp[i] = NULL; return ht; } fz_halftone * fz_keep_halftone(fz_context *ctx, fz_halftone *ht) { return fz_keep_imp(ctx, ht, &ht->refs); } void fz_drop_halftone(fz_context *ctx, fz_halftone *ht) { int i; if (fz_drop_imp(ctx, ht, &ht->refs)) { for (i = 0; i < ht->n; i++) fz_drop_pixmap(ctx, ht->comp[i]); fz_free(ctx, ht); } } /* Default mono halftone, lifted from Ghostscript. */ /* The 0x00 entry has been changed to 0x01 to avoid problems with white * pixels appearing in the output; as we use < 0 should not appear in the * array. I think that gs scales this slightly and hence never actually uses * the raw values here. */ static unsigned char mono_ht[] = { 0x0E, 0x8E, 0x2E, 0xAE, 0x06, 0x86, 0x26, 0xA6, 0x0C, 0x8C, 0x2C, 0xAC, 0x04, 0x84, 0x24, 0xA4, 0xCE, 0x4E, 0xEE, 0x6E, 0xC6, 0x46, 0xE6, 0x66, 0xCC, 0x4C, 0xEC, 0x6C, 0xC4, 0x44, 0xE4, 0x64, 0x3E, 0xBE, 0x1E, 0x9E, 0x36, 0xB6, 0x16, 0x96, 0x3C, 0xBC, 0x1C, 0x9C, 0x34, 0xB4, 0x14, 0x94, 0xFE, 0x7E, 0xDE, 0x5E, 0xF6, 0x76, 0xD6, 0x56, 0xFC, 0x7C, 0xDC, 0x5C, 0xF4, 0x74, 0xD4, 0x54, 0x01, 0x81, 0x21, 0xA1, 0x09, 0x89, 0x29, 0xA9, 0x03, 0x83, 0x23, 0xA3, 0x0B, 0x8B, 0x2B, 0xAB, 0xC1, 0x41, 0xE1, 0x61, 0xC9, 0x49, 0xE9, 0x69, 0xC3, 0x43, 0xE3, 0x63, 0xCB, 0x4B, 0xEB, 0x6B, 0x31, 0xB1, 0x11, 0x91, 0x39, 0xB9, 0x19, 0x99, 0x33, 0xB3, 0x13, 0x93, 0x3B, 0xBB, 0x1B, 0x9B, 0xF1, 0x71, 0xD1, 0x51, 0xF9, 0x79, 0xD9, 0x59, 0xF3, 0x73, 0xD3, 0x53, 0xFB, 0x7B, 0xDB, 0x5B, 0x0D, 0x8D, 0x2D, 0xAD, 0x05, 0x85, 0x25, 0xA5, 0x0F, 0x8F, 0x2F, 0xAF, 0x07, 0x87, 0x27, 0xA7, 0xCD, 0x4D, 0xED, 0x6D, 0xC5, 0x45, 0xE5, 0x65, 0xCF, 0x4F, 0xEF, 0x6F, 0xC7, 0x47, 0xE7, 0x67, 0x3D, 0xBD, 0x1D, 0x9D, 0x35, 0xB5, 0x15, 0x95, 0x3F, 0xBF, 0x1F, 0x9F, 0x37, 0xB7, 0x17, 0x97, 0xFD, 0x7D, 0xDD, 0x5D, 0xF5, 0x75, 0xD5, 0x55, 0xFF, 0x7F, 0xDF, 0x5F, 0xF7, 0x77, 0xD7, 0x57, 0x02, 0x82, 0x22, 0xA2, 0x0A, 0x8A, 0x2A, 0xAA, 0x01 /*0x00*/, 0x80, 0x20, 0xA0, 0x08, 0x88, 0x28, 0xA8, 0xC2, 0x42, 0xE2, 0x62, 0xCA, 0x4A, 0xEA, 0x6A, 0xC0, 0x40, 0xE0, 0x60, 0xC8, 0x48, 0xE8, 0x68, 0x32, 0xB2, 0x12, 0x92, 0x3A, 0xBA, 0x1A, 0x9A, 0x30, 0xB0, 0x10, 0x90, 0x38, 0xB8, 0x18, 0x98, 0xF2, 0x72, 0xD2, 0x52, 0xFA, 0x7A, 0xDA, 0x5A, 0xF0, 0x70, 0xD0, 0x50, 0xF8, 0x78, 0xD8, 0x58 }; /* Create a 'default' halftone structure for the given number of components. num_comps: The number of components to use. Returns a simple default halftone. The default halftone uses the same halftone tile for each plane, which may not be ideal for all purposes. */ fz_halftone *fz_default_halftone(fz_context *ctx, int num_comps) { fz_halftone *ht = fz_new_halftone(ctx, num_comps); fz_try(ctx) { int i; for (i = 0; i < num_comps; i++) ht->comp[i] = fz_new_pixmap_with_data(ctx, NULL, 16, 16, NULL, 1, 16, mono_ht); } fz_catch(ctx) { fz_drop_halftone(ctx, ht); fz_rethrow(ctx); } return ht; } /* Finally, code to actually perform halftoning. */ static void make_ht_line(unsigned char *buf, fz_halftone *ht, int x, int y, int w) { int k, n; n = ht->n; for (k = 0; k < n; k++) { fz_pixmap *tile = ht->comp[k]; unsigned char *b = buf++; unsigned char *t; unsigned char *tbase; int px = x + tile->x; int py = y + tile->y; int tw = tile->w; int th = tile->h; int w2 = w; int len; px = px % tw; if (px < 0) px += tw; py = py % th; if (py < 0) py += th; assert(tile->n == 1); /* Left hand section; from x to tile width */ tbase = tile->samples + (unsigned int)(py * tw); t = tbase + px; len = tw - px; if (len > w2) len = w2; w2 -= len; while (len--) { *b = *t++; b += n; } /* Centre section - complete copies */ w2 -= tw; while (w2 >= 0) { len = tw; t = tbase; while (len--) { *b = *t++; b += n; } w2 -= tw; } w2 += tw; /* Right hand section - stragglers */ t = tbase; while (w2--) { *b = *t++; b += n; } } } /* Inner mono thresholding code */ typedef void (threshold_fn)(const unsigned char *ht_line, const unsigned char *pixmap, unsigned char *out, int w, int ht_len); #ifdef ARCH_ARM static void do_threshold_1(const unsigned char * FZ_RESTRICT ht_line, const unsigned char * FZ_RESTRICT pixmap, unsigned char * FZ_RESTRICT out, int w, int ht_len) __attribute__((naked)); static void do_threshold_1(const unsigned char * FZ_RESTRICT ht_line, const unsigned char * FZ_RESTRICT pixmap, unsigned char * FZ_RESTRICT out, int w, int ht_len) { asm volatile( ENTER_ARM // Store one more reg that required to keep double stack alignment ".syntax unified\n" "stmfd r13!,{r4-r7,r9,r14} \n" "@ r0 = ht_line \n" "@ r1 = pixmap \n" "@ r2 = out \n" "@ r3 = w \n" "@ <> = ht_len \n" "ldr r9, [r13,#6*4] @ r9 = ht_len \n" "subs r3, r3, #7 @ r3 = w -= 7 \n" "ble 2f @ while (w > 0) { \n" "mov r12,r9 @ r12= l = ht_len \n" "b 1f \n" "9: \n" "strb r14,[r2], #1 @ *out++ = 0 \n" "subs r12,r12,#8 @ r12 = l -= 8 \n" "moveq r12,r9 @ if(l==0) l = ht_len \n" "subeq r0, r0, r9 @ ht_line -= l \n" "subs r3, r3, #8 @ w -= 8 \n" "ble 2f @ } \n" "1: \n" "ldr r14,[r1], #4 @ r14= pixmap[0..3] \n" "ldr r5, [r1], #4 @ r5 = pixmap[4..7] \n" "ldrb r4, [r0], #8 @ r0 = ht_line += 8 \n" "adds r14,r14,#1 @ set eq iff r14=-1 \n" "addseq r5, r5, #1 @ set eq iff r14=r5=-1 \n" "beq 9b @ white \n" "ldrb r5, [r1, #-8] @ r5 = pixmap[0] \n" "ldrb r6, [r0, #-7] @ r6 = ht_line[1] \n" "ldrb r7, [r1, #-7] @ r7 = pixmap[1] \n" "mov r14,#0 @ r14= h = 0 \n" "cmp r5, r4 @ if (r5 < r4) \n" "orrlt r14,r14,#0x80 @ h |= 0x80 \n" "ldrb r4, [r0, #-6] @ r4 = ht_line[2] \n" "ldrb r5, [r1, #-6] @ r5 = pixmap[2] \n" "cmp r7, r6 @ if (r7 < r6) \n" "orrlt r14,r14,#0x40 @ h |= 0x40 \n" "ldrb r6, [r0, #-5] @ r6 = ht_line[3] \n" "ldrb r7, [r1, #-5] @ r7 = pixmap[3] \n" "cmp r5, r4 @ if (r5 < r4) \n" "orrlt r14,r14,#0x20 @ h |= 0x20 \n" "ldrb r4, [r0, #-4] @ r4 = ht_line[4] \n" "ldrb r5, [r1, #-4] @ r5 = pixmap[4] \n" "cmp r7, r6 @ if (r7 < r6) \n" "orrlt r14,r14,#0x10 @ h |= 0x10 \n" "ldrb r6, [r0, #-3] @ r6 = ht_line[5] \n" "ldrb r7, [r1, #-3] @ r7 = pixmap[5] \n" "cmp r5, r4 @ if (r5 < r4) \n" "orrlt r14,r14,#0x08 @ h |= 0x08 \n" "ldrb r4, [r0, #-2] @ r4 = ht_line[6] \n" "ldrb r5, [r1, #-2] @ r5 = pixmap[6] \n" "cmp r7, r6 @ if (r7 < r6) \n" "orrlt r14,r14,#0x04 @ h |= 0x04 \n" "ldrb r6, [r0, #-1] @ r6 = ht_line[7] \n" "ldrb r7, [r1, #-1] @ r7 = pixmap[7] \n" "cmp r5, r4 @ if (r5 < r4) \n" "orrlt r14,r14,#0x02 @ h |= 0x02 \n" "cmp r7, r6 @ if (r7 < r6) \n" "orrlt r14,r14,#0x01 @ h |= 0x01 \n" "subs r12,r12,#8 @ r12 = l -= 8 \n" "strb r14,[r2], #1 @ *out++ = h \n" "moveq r12,r9 @ if(l==0) l = ht_len \n" "subeq r0, r0, r9 @ ht_line -= l \n" "subs r3, r3, #8 @ w -= 8 \n" "bgt 1b @ } \n" "2: \n" "adds r3, r3, #7 @ w += 7 \n" "ble 4f @ if (w >= 0) { \n" "ldrb r4, [r0], #1 @ r4 = ht_line[0] \n" "ldrb r5, [r1], #1 @ r5 = pixmap[0] \n" "mov r14, #0 @ r14= h = 0 \n" "cmp r5, r4 @ if (r5 < r4) \n" "orrlt r14,r14,#0x80 @ h |= 0x80 \n" "cmp r3, #1 @ \n" "ldrbgt r4, [r0], #1 @ r6 = ht_line[1] \n" "ldrbgt r5, [r1], #1 @ r7 = pixmap[1] \n" "ble 3f @ \n" "cmp r5, r4 @ if (r5 < r4) \n" "orrlt r14,r14,#0x40 @ h |= 0x40 \n" "cmp r3, #2 @ \n" "ldrbgt r4, [r0], #1 @ r6 = ht_line[2] \n" "ldrbgt r5, [r1], #1 @ r7 = pixmap[2] \n" "ble 3f @ \n" "cmp r5, r4 @ if (r5 < r4) \n" "orrlt r14,r14,#0x20 @ h |= 0x20 \n" "cmp r3, #3 @ \n" "ldrbgt r4, [r0], #1 @ r6 = ht_line[3] \n" "ldrbgt r5, [r1], #1 @ r7 = pixmap[3] \n" "ble 3f @ \n" "cmp r5, r4 @ if (r5 < r4) \n" "orrlt r14,r14,#0x10 @ h |= 0x10 \n" "cmp r3, #4 @ \n" "ldrbgt r4, [r0], #1 @ r6 = ht_line[4] \n" "ldrbgt r5, [r1], #1 @ r7 = pixmap[4] \n" "ble 3f @ \n" "cmp r5, r4 @ if (r5 < r4) \n" "orrlt r14,r14,#0x08 @ h |= 0x08 \n" "cmp r3, #5 @ \n" "ldrbgt r4, [r0], #1 @ r6 = ht_line[5] \n" "ldrbgt r5, [r1], #1 @ r7 = pixmap[5] \n" "ble 3f @ \n" "cmp r5, r4 @ if (r5 < r4) \n" "orrlt r14,r14,#0x04 @ h |= 0x04 \n" "cmp r3, #6 @ \n" "ldrbgt r4, [r0], #1 @ r6 = ht_line[6] \n" "ldrbgt r5, [r1], #1 @ r7 = pixmap[6] \n" "ble 3f @ \n" "cmp r5, r4 @ if (r5 < r4) \n" "orrlt r14,r14,#0x02 @ h |= 0x02 \n" "3: \n" "strb r14,[r2] @ *out = h \n" "4: \n" "ldmfd r13!,{r4-r7,r9,PC} @ pop, return to thumb \n" ENTER_THUMB ); } #else static void do_threshold_1(const unsigned char * FZ_RESTRICT ht_line, const unsigned char * FZ_RESTRICT pixmap, unsigned char * FZ_RESTRICT out, int w, int ht_len) { int h; int l = ht_len; w -= 7; while (w > 0) { h = 0; if (pixmap[0] < ht_line[0]) h |= 0x80; if (pixmap[1] < ht_line[1]) h |= 0x40; if (pixmap[2] < ht_line[2]) h |= 0x20; if (pixmap[3] < ht_line[3]) h |= 0x10; if (pixmap[4] < ht_line[4]) h |= 0x08; if (pixmap[5] < ht_line[5]) h |= 0x04; if (pixmap[6] < ht_line[6]) h |= 0x02; if (pixmap[7] < ht_line[7]) h |= 0x01; pixmap += 8; ht_line += 8; l -= 8; if (l == 0) { l = ht_len; ht_line -= ht_len; } *out++ = h; w -= 8; } if (w > -7) { h = 0; if (pixmap[0] < ht_line[0]) h |= 0x80; if (w > -6 && pixmap[1] < ht_line[1]) h |= 0x40; if (w > -5 && pixmap[2] < ht_line[2]) h |= 0x20; if (w > -4 && pixmap[3] < ht_line[3]) h |= 0x10; if (w > -3 && pixmap[4] < ht_line[4]) h |= 0x08; if (w > -2 && pixmap[5] < ht_line[5]) h |= 0x04; if (w > -1 && pixmap[6] < ht_line[6]) h |= 0x02; *out++ = h; } } #endif /* Note that the tests in do_threshold_4 are inverted compared to those in do_threshold_1. This is to allow for the fact that the CMYK contone renderings have white = 0, whereas rgb, and greyscale have white = 0xFF. Reversing these tests enables us to maintain that BlackIs1 in bitmaps. */ #ifdef ARCH_ARM static void do_threshold_4(const unsigned char * FZ_RESTRICT ht_line, const unsigned char * FZ_RESTRICT pixmap, unsigned char * FZ_RESTRICT out, int w, int ht_len) __attribute__((naked)); static void do_threshold_4(const unsigned char * FZ_RESTRICT ht_line, const unsigned char * FZ_RESTRICT pixmap, unsigned char * FZ_RESTRICT out, int w, int ht_len) { asm volatile( ENTER_ARM // Store one more reg that required to keep double stack alignment "stmfd r13!,{r4-r7,r9,r14} \n" "@ r0 = ht_line \n" "@ r1 = pixmap \n" "@ r2 = out \n" "@ r3 = w \n" "@ <> = ht_len \n" "ldr r9, [r13,#6*4] @ r9 = ht_len \n" "subs r3, r3, #1 @ r3 = w -= 1 \n" "ble 2f @ while (w > 0) { \n" "mov r12,r9 @ r12= l = ht_len \n" "b 1f @ \n" "9: @ \n" "strb r14,[r2], #1 @ *out++ = h \n" "subs r12,r12,#2 @ r12 = l -= 2 \n" "moveq r12,r9 @ if(l==0) l = ht_len \n" "subeq r0, r0, r9, LSL #2 @ ht_line -= l \n" "subs r3, r3, #2 @ w -= 2 \n" "beq 2f @ } \n" "blt 3f @ \n" "1: \n" "ldr r5, [r1], #4 @ r5 = pixmap[0..3] \n" "ldr r7, [r1], #4 @ r7 = pixmap[4..7] \n" "add r0, r0, #8 @ r0 = ht_line += 8 \n" "mov r14,#0 @ r14= h = 0 \n" "orrs r5, r5, r7 @ if (r5 | r7 == 0) \n" "beq 9b @ white \n" "ldrb r4, [r0, #-8] @ r4 = ht_line[0] \n" "ldrb r5, [r1, #-8] @ r5 = pixmap[0] \n" "ldrb r6, [r0, #-7] @ r6 = ht_line[1] \n" "ldrb r7, [r1, #-7] @ r7 = pixmap[1] \n" "cmp r4, r5 @ if (r4 < r5) \n" "orrle r14,r14,#0x80 @ h |= 0x80 \n" "ldrb r4, [r0, #-6] @ r4 = ht_line[2] \n" "ldrb r5, [r1, #-6] @ r5 = pixmap[2] \n" "cmp r6, r7 @ if (r6 < r7) \n" "orrle r14,r14,#0x40 @ h |= 0x40 \n" "ldrb r6, [r0, #-5] @ r6 = ht_line[3] \n" "ldrb r7, [r1, #-5] @ r7 = pixmap[3] \n" "cmp r4, r5 @ if (r4 < r5) \n" "orrle r14,r14,#0x20 @ h |= 0x20 \n" "ldrb r4, [r0, #-4] @ r4 = ht_line[4] \n" "ldrb r5, [r1, #-4] @ r5 = pixmap[4] \n" "cmp r6, r7 @ if (r6 < r7) \n" "orrle r14,r14,#0x10 @ h |= 0x10 \n" "ldrb r6, [r0, #-3] @ r6 = ht_line[5] \n" "ldrb r7, [r1, #-3] @ r7 = pixmap[5] \n" "cmp r4, r5 @ if (r4 < r5) \n" "orrle r14,r14,#0x08 @ h |= 0x08 \n" "ldrb r4, [r0, #-2] @ r4 = ht_line[6] \n" "ldrb r5, [r1, #-2] @ r5 = pixmap[6] \n" "cmp r6, r7 @ if (r6 < r7) \n" "orrle r14,r14,#0x04 @ h |= 0x04 \n" "ldrb r6, [r0, #-1] @ r6 = ht_line[7] \n" "ldrb r7, [r1, #-1] @ r7 = pixmap[7] \n" "cmp r4, r5 @ if (r4 < r5) \n" "orrle r14,r14,#0x02 @ h |= 0x02 \n" "cmp r6, r7 @ if (r7 < r6) \n" "orrle r14,r14,#0x01 @ h |= 0x01 \n" "subs r12,r12,#2 @ r12 = l -= 2 \n" "strb r14,[r2], #1 @ *out++ = h \n" "moveq r12,r9 @ if(l==0) l = ht_len \n" "subeq r0, r0, r9, LSL #2 @ ht_line -= l \n" "subs r3, r3, #2 @ w -= 2 \n" "bgt 1b @ } \n" "blt 3f @ \n" "2: \n" "ldrb r4, [r0], #1 @ r4 = ht_line[0] \n" "ldrb r5, [r1], #1 @ r5 = pixmap[0] \n" "mov r14, #0 @ r14= h = 0 \n" "ldrb r6, [r0], #1 @ r6 = ht_line[1] \n" "ldrb r7, [r1], #1 @ r7 = pixmap[1] \n" "cmp r4, r5 @ if (r4 < r5) \n" "orrle r14,r14,#0x80 @ h |= 0x80 \n" "ldrb r4, [r0], #1 @ r6 = ht_line[2] \n" "ldrb r5, [r1], #1 @ r7 = pixmap[2] \n" "cmp r6, r7 @ if (r6 < r7) \n" "orrle r14,r14,#0x40 @ h |= 0x40 \n" "ldrb r6, [r0], #1 @ r6 = ht_line[1] \n" "ldrb r7, [r1], #1 @ r7 = pixmap[3] \n" "cmp r4, r5 @ if (r4 < r5) \n" "orrle r14,r14,#0x20 @ h |= 0x20 \n" "cmp r6, r7 @ if (r6 < r7) \n" "orrle r14,r14,#0x10 @ h |= 0x10 \n" "strb r14,[r2] @ *out = h \n" "3: \n" "ldmfd r13!,{r4-r7,r9,PC} @ pop, return to thumb \n" ENTER_THUMB ); } #else static void do_threshold_4(const unsigned char * FZ_RESTRICT ht_line, const unsigned char * FZ_RESTRICT pixmap, unsigned char * FZ_RESTRICT out, int w, int ht_len) { int l = ht_len; w--; while (w > 0) { int h = 0; if (pixmap[0] >= ht_line[0]) h |= 0x80; if (pixmap[1] >= ht_line[1]) h |= 0x40; if (pixmap[2] >= ht_line[2]) h |= 0x20; if (pixmap[3] >= ht_line[3]) h |= 0x10; if (pixmap[4] >= ht_line[4]) h |= 0x08; if (pixmap[5] >= ht_line[5]) h |= 0x04; if (pixmap[6] >= ht_line[6]) h |= 0x02; if (pixmap[7] >= ht_line[7]) h |= 0x01; *out++ = h; l -= 2; if (l == 0) { l = ht_len; ht_line -= ht_len<<2; } pixmap += 8; ht_line += 8; w -= 2; } if (w == 0) { int h = 0; if (pixmap[0] >= ht_line[0]) h |= 0x80; if (pixmap[1] >= ht_line[1]) h |= 0x40; if (pixmap[2] >= ht_line[2]) h |= 0x20; if (pixmap[3] >= ht_line[3]) h |= 0x10; *out = h; } } #endif /* Make a bitmap from a pixmap and a halftone. pix: The pixmap to generate from. Currently must be a single color component with no alpha. ht: The halftone to use. NULL implies the default halftone. Returns the resultant bitmap. Throws exceptions in the case of failure to allocate. */ fz_bitmap *fz_new_bitmap_from_pixmap(fz_context *ctx, fz_pixmap *pix, fz_halftone *ht) { return fz_new_bitmap_from_pixmap_band(ctx, pix, ht, 0); } /* TAOCP, vol 2, p337 */ static int gcd(int u, int v) { int r; do { if (v == 0) return u; r = u % v; u = v; v = r; } while (1); } /* Make a bitmap from a pixmap and a halftone, allowing for the position of the pixmap within an overall banded rendering. pix: The pixmap to generate from. Currently must be a single color component with no alpha. ht: The halftone to use. NULL implies the default halftone. band_start: Vertical offset within the overall banded rendering (in pixels) Returns the resultant bitmap. Throws exceptions in the case of failure to allocate. */ fz_bitmap *fz_new_bitmap_from_pixmap_band(fz_context *ctx, fz_pixmap *pix, fz_halftone *ht, int band_start) { fz_bitmap *out = NULL; unsigned char *ht_line = NULL; unsigned char *o, *p; int w, h, x, y, n, pstride, ostride, lcm, i; fz_halftone *ht_ = NULL; threshold_fn *thresh; fz_var(ht_line); if (!pix) return NULL; if (pix->alpha != 0) fz_throw(ctx, FZ_ERROR_GENERIC, "pixmap may not have alpha channel to convert to bitmap"); n = pix->n; switch(n) { case 1: thresh = do_threshold_1; break; case 4: thresh = do_threshold_4; break; default: fz_throw(ctx, FZ_ERROR_GENERIC, "pixmap must be grayscale or CMYK to convert to bitmap"); return NULL; } if (ht == NULL) ht_ = ht = fz_default_halftone(ctx, n); /* Find the minimum length for the halftone line. This * is the LCM of the halftone lengths and 8. (We need a * multiple of 8 for the unrolled threshold routines - if * we ever use SSE, we may need longer.) We use the fact * that LCM(a,b) = a * b / GCD(a,b) and use euclids * algorithm. */ lcm = 8; for (i = 0; i < ht->n; i++) { w = ht->comp[i]->w; lcm = lcm / gcd(lcm, w) * w; } fz_try(ctx) { ht_line = fz_malloc(ctx, lcm * n); out = fz_new_bitmap(ctx, pix->w, pix->h, n, pix->xres, pix->yres); o = out->samples; p = pix->samples; h = pix->h; x = pix->x; y = pix->y + band_start; w = pix->w; ostride = out->stride; pstride = pix->stride; while (h--) { make_ht_line(ht_line, ht, x, y++, lcm); thresh(ht_line, p, o, w, lcm); o += ostride; p += pstride; } } fz_always(ctx) { fz_drop_halftone(ctx, ht_); fz_free(ctx, ht_line); } fz_catch(ctx) fz_rethrow(ctx); return out; }