/* * Copyright © 2017 Google, Inc. * * This is part of HarfBuzz, a text shaping library. * * Permission is hereby granted, without written agreement and without * license or royalty fees, to use, copy, modify, and distribute this * software and its documentation for any purpose, provided that the * above copyright notice and the following two paragraphs appear in * all copies of this software. * * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. * * Google Author(s): Behdad Esfahbod */ #ifndef HB_AAT_LAYOUT_MORX_TABLE_HH #define HB_AAT_LAYOUT_MORX_TABLE_HH #include "hb-open-type.hh" #include "hb-aat-layout-common.hh" #include "hb-ot-layout-common.hh" /* * morx -- Extended Glyph Metamorphosis * https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6morx.html */ #define HB_AAT_TAG_morx HB_TAG('m','o','r','x') namespace AAT { using namespace OT; struct RearrangementSubtable { typedef void EntryData; struct driver_context_t { static const bool in_place = true; enum Flags { MarkFirst = 0x8000, /* If set, make the current glyph the first * glyph to be rearranged. */ DontAdvance = 0x4000, /* If set, don't advance to the next glyph * before going to the new state. This means * that the glyph index doesn't change, even * if the glyph at that index has changed. */ MarkLast = 0x2000, /* If set, make the current glyph the last * glyph to be rearranged. */ Reserved = 0x1FF0, /* These bits are reserved and should be set to 0. */ Verb = 0x000F, /* The type of rearrangement specified. */ }; inline driver_context_t (const RearrangementSubtable *table) : ret (false), start (0), end (0) {} inline bool is_actionable (StateTableDriver *driver, const Entry *entry) { return (entry->flags & Verb) && start < end; } inline bool transition (StateTableDriver *driver, const Entry *entry) { hb_buffer_t *buffer = driver->buffer; unsigned int flags = entry->flags; if (flags & MarkFirst) start = buffer->idx; if (flags & MarkLast) end = MIN (buffer->idx + 1, buffer->len); if ((flags & Verb) && start < end) { /* The following map has two nibbles, for start-side * and end-side. Values of 0,1,2 mean move that many * to the other side. Value of 3 means move 2 and * flip them. */ const unsigned char map[16] = { 0x00, /* 0 no change */ 0x10, /* 1 Ax => xA */ 0x01, /* 2 xD => Dx */ 0x11, /* 3 AxD => DxA */ 0x20, /* 4 ABx => xAB */ 0x30, /* 5 ABx => xBA */ 0x02, /* 6 xCD => CDx */ 0x03, /* 7 xCD => DCx */ 0x12, /* 8 AxCD => CDxA */ 0x13, /* 9 AxCD => DCxA */ 0x21, /* 10 ABxD => DxAB */ 0x31, /* 11 ABxD => DxBA */ 0x22, /* 12 ABxCD => CDxAB */ 0x32, /* 13 ABxCD => CDxBA */ 0x23, /* 14 ABxCD => DCxAB */ 0x33, /* 15 ABxCD => DCxBA */ }; unsigned int m = map[flags & Verb]; unsigned int l = MIN (2, m >> 4); unsigned int r = MIN (2, m & 0x0F); bool reverse_l = 3 == (m >> 4); bool reverse_r = 3 == (m & 0x0F); if (end - start >= l + r) { buffer->merge_clusters (start, MIN (buffer->idx + 1, buffer->len)); buffer->merge_clusters (start, end); hb_glyph_info_t *info = buffer->info; hb_glyph_info_t buf[4]; memcpy (buf, info + start, l * sizeof (buf[0])); memcpy (buf + 2, info + end - r, r * sizeof (buf[0])); if (l != r) memmove (info + start + r, info + start + l, (end - start - l - r) * sizeof (buf[0])); memcpy (info + start, buf + 2, r * sizeof (buf[0])); memcpy (info + end - l, buf, l * sizeof (buf[0])); if (reverse_l) { buf[0] = info[end - 1]; info[end - 1] = info[end - 2]; info[end - 2] = buf[0]; } if (reverse_r) { buf[0] = info[start]; info[start] = info[start + 1]; info[start + 1] = buf[0]; } } } return true; } public: bool ret; private: unsigned int start; unsigned int end; }; inline bool apply (hb_aat_apply_context_t *c) const { TRACE_APPLY (this); driver_context_t dc (this); StateTableDriver driver (machine, c->buffer, c->face); driver.drive (&dc); return_trace (dc.ret); } inline bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (machine.sanitize (c)); } protected: StateTable machine; public: DEFINE_SIZE_STATIC (16); }; struct ContextualSubtable { struct EntryData { HBUINT16 markIndex; /* Index of the substitution table for the * marked glyph (use 0xFFFF for none). */ HBUINT16 currentIndex; /* Index of the substitution table for the * current glyph (use 0xFFFF for none). */ public: DEFINE_SIZE_STATIC (4); }; struct driver_context_t { static const bool in_place = true; enum Flags { SetMark = 0x8000, /* If set, make the current glyph the marked glyph. */ DontAdvance = 0x4000, /* If set, don't advance to the next glyph before * going to the new state. */ Reserved = 0x3FFF, /* These bits are reserved and should be set to 0. */ }; inline driver_context_t (const ContextualSubtable *table) : ret (false), mark_set (false), mark (0), subs (table+table->substitutionTables) {} inline bool is_actionable (StateTableDriver *driver, const Entry *entry) { hb_buffer_t *buffer = driver->buffer; if (buffer->idx == buffer->len && !mark_set) return false; return entry->data.markIndex != 0xFFFF || entry->data.currentIndex != 0xFFFF; } inline bool transition (StateTableDriver *driver, const Entry *entry) { hb_buffer_t *buffer = driver->buffer; /* Looks like CoreText applies neither mark nor current substitution for * end-of-text if mark was not explicitly set. */ if (buffer->idx == buffer->len && !mark_set) return true; if (entry->data.markIndex != 0xFFFF) { const Lookup &lookup = subs[entry->data.markIndex]; hb_glyph_info_t *info = buffer->info; const GlyphID *replacement = lookup.get_value (info[mark].codepoint, driver->num_glyphs); if (replacement) { buffer->unsafe_to_break (mark, MIN (buffer->idx + 1, buffer->len)); info[mark].codepoint = *replacement; ret = true; } } if (entry->data.currentIndex != 0xFFFF) { unsigned int idx = MIN (buffer->idx, buffer->len - 1); const Lookup &lookup = subs[entry->data.currentIndex]; hb_glyph_info_t *info = buffer->info; const GlyphID *replacement = lookup.get_value (info[idx].codepoint, driver->num_glyphs); if (replacement) { info[idx].codepoint = *replacement; ret = true; } } if (entry->flags & SetMark) { mark_set = true; mark = buffer->idx; } return true; } public: bool ret; private: bool mark_set; unsigned int mark; const UnsizedOffsetListOf, HBUINT32> &subs; }; inline bool apply (hb_aat_apply_context_t *c) const { TRACE_APPLY (this); driver_context_t dc (this); StateTableDriver driver (machine, c->buffer, c->face); driver.drive (&dc); return_trace (dc.ret); } inline bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); unsigned int num_entries = 0; if (unlikely (!machine.sanitize (c, &num_entries))) return_trace (false); unsigned int num_lookups = 0; const Entry *entries = machine.get_entries (); for (unsigned int i = 0; i < num_entries; i++) { const EntryData &data = entries[i].data; if (data.markIndex != 0xFFFF) num_lookups = MAX (num_lookups, 1 + data.markIndex); if (data.currentIndex != 0xFFFF) num_lookups = MAX (num_lookups, 1 + data.currentIndex); } return_trace (substitutionTables.sanitize (c, this, num_lookups)); } protected: StateTable machine; LOffsetTo, HBUINT32> > substitutionTables; public: DEFINE_SIZE_STATIC (20); }; struct LigatureSubtable { struct EntryData { HBUINT16 ligActionIndex; /* Index to the first ligActionTable entry * for processing this group, if indicated * by the flags. */ public: DEFINE_SIZE_STATIC (2); }; struct driver_context_t { static const bool in_place = false; enum Flags { SetComponent = 0x8000, /* Push this glyph onto the component stack for * eventual processing. */ DontAdvance = 0x4000, /* Leave the glyph pointer at this glyph for the next iteration. */ PerformAction = 0x2000, /* Use the ligActionIndex to process a ligature * group. */ Reserved = 0x1FFF, /* These bits are reserved and should be set to 0. */ }; enum LigActionFlags { LigActionLast = 0x80000000, /* This is the last action in the list. This also * implies storage. */ LigActionStore = 0x40000000, /* Store the ligature at the current cumulated index * in the ligature table in place of the marked * (i.e. currently-popped) glyph. */ LigActionOffset = 0x3FFFFFFF, /* A 30-bit value which is sign-extended to 32-bits * and added to the glyph ID, resulting in an index * into the component table. */ }; inline driver_context_t (const LigatureSubtable *table, hb_aat_apply_context_t *c_) : ret (false), c (c_), ligAction (table+table->ligAction), component (table+table->component), ligature (table+table->ligature), match_length (0) {} inline bool is_actionable (StateTableDriver *driver, const Entry *entry) { return !!(entry->flags & PerformAction); } inline bool transition (StateTableDriver *driver, const Entry *entry) { hb_buffer_t *buffer = driver->buffer; unsigned int flags = entry->flags; if (flags & SetComponent) { if (unlikely (match_length >= ARRAY_LENGTH (match_positions))) return false; /* Never mark same index twice, in case DontAdvance was used... */ if (match_length && match_positions[match_length - 1] == buffer->out_len) match_length--; match_positions[match_length++] = buffer->out_len; } if (flags & PerformAction) { unsigned int end = buffer->out_len; unsigned int action_idx = entry->data.ligActionIndex; unsigned int action; unsigned int ligature_idx = 0; do { if (unlikely (!match_length)) return false; buffer->move_to (match_positions[--match_length]); const HBUINT32 &actionData = ligAction[action_idx]; if (unlikely (!actionData.sanitize (&c->sanitizer))) return false; action = actionData; uint32_t uoffset = action & LigActionOffset; if (uoffset & 0x20000000) uoffset += 0xC0000000; int32_t offset = (int32_t) uoffset; unsigned int component_idx = buffer->cur().codepoint + offset; const HBUINT16 &componentData = component[component_idx]; if (unlikely (!componentData.sanitize (&c->sanitizer))) return false; ligature_idx += componentData; if (action & (LigActionStore | LigActionLast)) { const GlyphID &ligatureData = ligature[ligature_idx]; if (unlikely (!ligatureData.sanitize (&c->sanitizer))) return false; hb_codepoint_t lig = ligatureData; match_positions[match_length++] = buffer->out_len; buffer->replace_glyph (lig); //ligature_idx = 0; // XXX Yes or no? } else { buffer->skip_glyph (); end--; } /* TODO merge_clusters / unsafe_to_break */ action_idx++; } while (!(action & LigActionLast)); buffer->move_to (end); } return true; } public: bool ret; private: hb_aat_apply_context_t *c; const UnsizedArrayOf &ligAction; const UnsizedArrayOf &component; const UnsizedArrayOf &ligature; unsigned int match_length; unsigned int match_positions[HB_MAX_CONTEXT_LENGTH]; }; inline bool apply (hb_aat_apply_context_t *c) const { TRACE_APPLY (this); driver_context_t dc (this, c); StateTableDriver driver (machine, c->buffer, c->face); driver.drive (&dc); return_trace (dc.ret); } inline bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); /* The rest of array sanitizations are done at run-time. */ return_trace (c->check_struct (this) && machine.sanitize (c) && ligAction && component && ligature); } protected: StateTable machine; LOffsetTo > ligAction; /* Offset to the ligature action table. */ LOffsetTo > component; /* Offset to the component table. */ LOffsetTo > ligature; /* Offset to the actual ligature lists. */ public: DEFINE_SIZE_STATIC (28); }; struct NoncontextualSubtable { inline bool apply (hb_aat_apply_context_t *c) const { TRACE_APPLY (this); bool ret = false; unsigned int num_glyphs = c->face->get_num_glyphs (); hb_glyph_info_t *info = c->buffer->info; unsigned int count = c->buffer->len; for (unsigned int i = 0; i < count; i++) { const GlyphID *replacement = substitute.get_value (info[i].codepoint, num_glyphs); if (replacement) { info[i].codepoint = *replacement; ret = true; } } return_trace (ret); } inline bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (substitute.sanitize (c)); } protected: Lookup substitute; public: DEFINE_SIZE_MIN (2); }; struct InsertionSubtable { inline bool apply (hb_aat_apply_context_t *c) const { TRACE_APPLY (this); /* TODO */ return_trace (false); } inline bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); /* TODO */ return_trace (true); } }; struct Feature { inline bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (c->check_struct (this)); } public: HBUINT16 featureType; /* The type of feature. */ HBUINT16 featureSetting; /* The feature's setting (aka selector). */ HBUINT32 enableFlags; /* Flags for the settings that this feature * and setting enables. */ HBUINT32 disableFlags; /* Complement of flags for the settings that this * feature and setting disable. */ public: DEFINE_SIZE_STATIC (12); }; struct ChainSubtable { friend struct Chain; inline unsigned int get_size (void) const { return length; } inline unsigned int get_type (void) const { return coverage & 0xFF; } enum Type { Rearrangement = 0, Contextual = 1, Ligature = 2, Noncontextual = 4, Insertion = 5 }; inline void apply (hb_aat_apply_context_t *c) const { dispatch (c); } template inline typename context_t::return_t dispatch (context_t *c) const { unsigned int subtable_type = get_type (); TRACE_DISPATCH (this, subtable_type); switch (subtable_type) { case Rearrangement: return_trace (c->dispatch (u.rearrangement)); case Contextual: return_trace (c->dispatch (u.contextual)); case Ligature: return_trace (c->dispatch (u.ligature)); case Noncontextual: return_trace (c->dispatch (u.noncontextual)); case Insertion: return_trace (c->dispatch (u.insertion)); default: return_trace (c->default_return_value ()); } } inline bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); if (!length.sanitize (c) || length < min_size || !c->check_range (this, length)) return_trace (false); return_trace (dispatch (c)); } protected: HBUINT32 length; /* Total subtable length, including this header. */ HBUINT32 coverage; /* Coverage flags and subtable type. */ HBUINT32 subFeatureFlags;/* The 32-bit mask identifying which subtable this is. */ union { RearrangementSubtable rearrangement; ContextualSubtable contextual; LigatureSubtable ligature; NoncontextualSubtable noncontextual; InsertionSubtable insertion; } u; public: DEFINE_SIZE_MIN (12); }; struct Chain { inline void apply (hb_aat_apply_context_t *c) const { const ChainSubtable *subtable = &StructAtOffset (featureZ, featureZ[0].static_size * featureCount); unsigned int count = subtableCount; for (unsigned int i = 0; i < count; i++) { if (!c->buffer->message (c->font, "start chain subtable %d", c->lookup_index)) { c->set_lookup_index (c->lookup_index + 1); continue; } subtable->apply (c); subtable = &StructAfter (*subtable); (void) c->buffer->message (c->font, "end chain subtable %d", c->lookup_index); c->set_lookup_index (c->lookup_index + 1); } } inline unsigned int get_size (void) const { return length; } inline bool sanitize (hb_sanitize_context_t *c, unsigned int major) const { TRACE_SANITIZE (this); if (!length.sanitize (c) || length < min_size || !c->check_range (this, length)) return_trace (false); if (!c->check_array (featureZ, featureZ[0].static_size, featureCount)) return_trace (false); const ChainSubtable *subtable = &StructAtOffset (featureZ, featureZ[0].static_size * featureCount); unsigned int count = subtableCount; for (unsigned int i = 0; i < count; i++) { if (!subtable->sanitize (c)) return_trace (false); subtable = &StructAfter (*subtable); } return_trace (true); } protected: HBUINT32 defaultFlags; /* The default specification for subtables. */ HBUINT32 length; /* Total byte count, including this header. */ HBUINT32 featureCount; /* Number of feature subtable entries. */ HBUINT32 subtableCount; /* The number of subtables in the chain. */ Feature featureZ[VAR]; /* Features. */ /*ChainSubtable subtableX[VAR];*//* Subtables. */ /*subtableGlyphCoverageArray*/ /* Only if major == 3. */ public: DEFINE_SIZE_MIN (16); }; /* * The 'mort'/'morx' Tables */ struct morx { static const hb_tag_t tableTag = HB_AAT_TAG_morx; inline void apply (hb_aat_apply_context_t *c) const { c->set_lookup_index (0); const Chain *chain = chainsZ; unsigned int count = chainCount; for (unsigned int i = 0; i < count; i++) { chain->apply (c); chain = &StructAfter (*chain); } } inline bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); if (!version.sanitize (c) || (version.major >> (sizeof (HBUINT32) == 4 ? 1 : 0)) != 1 || !chainCount.sanitize (c)) return_trace (false); const Chain *chain = chainsZ; unsigned int count = chainCount; for (unsigned int i = 0; i < count; i++) { if (!chain->sanitize (c, version.major)) return_trace (false); chain = &StructAfter (*chain); } return_trace (true); } protected: FixedVersion<>version; /* Version number of the glyph metamorphosis table. * 1 for mort, 2 or 3 for morx. */ HBUINT32 chainCount; /* Number of metamorphosis chains contained in this * table. */ Chain chainsZ[VAR]; /* Chains. */ public: DEFINE_SIZE_MIN (8); }; } /* namespace AAT */ #endif /* HB_AAT_LAYOUT_MORX_TABLE_HH */