#ifndef MUPDF_FITZ_MATH_H #define MUPDF_FITZ_MATH_H #include "mupdf/fitz/system.h" /* Multiply scaled two integers in the 0..255 range */ static inline int fz_mul255(int a, int b) { /* see Jim Blinn's book "Dirty Pixels" for how this works */ int x = a * b + 128; x += x >> 8; return x >> 8; } /* Undo alpha premultiplication. */ static inline int fz_div255(int c, int a) { return a ? c * (255 * 256 / a) >> 8 : 0; } /* Expand a value A from the 0...255 range to the 0..256 range */ #define FZ_EXPAND(A) ((A)+((A)>>7)) /* Combine values A (in any range) and B (in the 0..256 range), to give a single value in the same range as A was. */ #define FZ_COMBINE(A,B) (((A)*(B))>>8) /* Combine values A and C (in the same (any) range) and B and D (in the 0..256 range), to give a single value in the same range as A and C were. */ #define FZ_COMBINE2(A,B,C,D) (((A) * (B) + (C) * (D))>>8) /* Blend SRC and DST (in the same range) together according to AMOUNT (in the 0...256 range). */ #define FZ_BLEND(SRC, DST, AMOUNT) ((((SRC)-(DST))*(AMOUNT) + ((DST)<<8))>>8) float fz_atof(const char *s); int fz_atoi(const char *s); int64_t fz_atoi64(const char *s); /* Some standard math functions, done as static inlines for speed. People with compilers that do not adequately implement inlines may like to reimplement these using macros. */ static inline float fz_abs(float f) { return (f < 0 ? -f : f); } static inline int fz_absi(int i) { return (i < 0 ? -i : i); } static inline float fz_min(float a, float b) { return (a < b ? a : b); } static inline int fz_mini(int a, int b) { return (a < b ? a : b); } static inline size_t fz_minz(size_t a, size_t b) { return (a < b ? a : b); } static inline float fz_max(float a, float b) { return (a > b ? a : b); } static inline int fz_maxi(int a, int b) { return (a > b ? a : b); } static inline int64_t fz_maxi64(int64_t a, int64_t b) { return (a > b ? a : b); } static inline float fz_clamp(float f, float min, float max) { return (f > min ? (f < max ? f : max) : min); } static inline int fz_clampi(int i, int min, int max) { return (i > min ? (i < max ? i : max) : min); } static inline double fz_clampd(double d, double min, double max) { return (d > min ? (d < max ? d : max) : min); } static inline void *fz_clampp(void *p, void *min, void *max) { return (p > min ? (p < max ? p : max) : min); } #define DIV_BY_ZERO(a, b, min, max) (((a) < 0) ^ ((b) < 0) ? (min) : (max)) /* fz_point is a point in a two-dimensional space. */ typedef struct fz_point_s fz_point; struct fz_point_s { float x, y; }; static inline fz_point fz_make_point(float x, float y) { fz_point p = { x, y }; return p; } /* fz_rect is a rectangle represented by two diagonally opposite corners at arbitrary coordinates. Rectangles are always axis-aligned with the X- and Y- axes. The relationship between the coordinates are that x0 <= x1 and y0 <= y1 in all cases except for infinite rectangles. The area of a rectangle is defined as (x1 - x0) * (y1 - y0). If either x0 > x1 or y0 > y1 is true for a given rectangle then it is defined to be infinite. To check for empty or infinite rectangles use fz_is_empty_rect and fz_is_infinite_rect. x0, y0: The top left corner. x1, y1: The bottom right corner. */ typedef struct fz_rect_s fz_rect; struct fz_rect_s { float x0, y0; float x1, y1; }; static inline fz_rect fz_make_rect(float x0, float y0, float x1, float y1) { fz_rect r = { x0, y0, x1, y1 }; return r; } /* fz_irect is a rectangle using integers instead of floats. It's used in the draw device and for pixmap dimensions. */ typedef struct fz_irect_s fz_irect; struct fz_irect_s { int x0, y0; int x1, y1; }; static inline fz_irect fz_make_irect(int x0, int y0, int x1, int y1) { fz_irect r = { x0, y0, x1, y1 }; return r; } /* A rectangle with sides of length one. The bottom left corner is at (0, 0) and the top right corner is at (1, 1). */ extern const fz_rect fz_unit_rect; /* An empty rectangle with an area equal to zero. Both the top left and bottom right corner are at (0, 0). */ extern const fz_rect fz_empty_rect; extern const fz_irect fz_empty_irect; /* An infinite rectangle with negative area. The corner (x0, y0) is at (1, 1) while the corner (x1, y1) is at (-1, -1). */ extern const fz_rect fz_infinite_rect; extern const fz_irect fz_infinite_irect; /* Check if rectangle is empty. An empty rectangle is defined as one whose area is zero. */ static inline int fz_is_empty_rect(fz_rect r) { return (r.x0 == r.x1 || r.y0 == r.y1); } static inline int fz_is_empty_irect(fz_irect r) { return (r.x0 == r.x1 || r.y0 == r.y1); } /* Check if rectangle is infinite. An infinite rectangle is defined as one where either of the two relationships between corner coordinates are not true. */ static inline int fz_is_infinite_rect(fz_rect r) { return (r.x0 > r.x1 || r.y0 > r.y1); } /* Check if an integer rectangle is infinite. An infinite rectangle is defined as one where either of the two relationships between corner coordinates are not true. */ static inline int fz_is_infinite_irect(fz_irect r) { return (r.x0 > r.x1 || r.y0 > r.y1); } /* fz_matrix is a row-major 3x3 matrix used for representing transformations of coordinates throughout MuPDF. Since all points reside in a two-dimensional space, one vector is always a constant unit vector; hence only some elements may vary in a matrix. Below is how the elements map between different representations. / a b 0 \ | c d 0 | normally represented as [ a b c d e f ]. \ e f 1 / */ typedef struct fz_matrix_s fz_matrix; struct fz_matrix_s { float a, b, c, d, e, f; }; /* Identity transform matrix. */ extern const fz_matrix fz_identity; static inline fz_matrix fz_make_matrix(float a, float b, float c, float d, float e, float f) { fz_matrix m = { a, b, c, d, e, f }; return m; } static inline int fz_is_identity(fz_matrix m) { return m.a == 1 && m.b == 0 && m.c == 0 && m.d == 1 && m.e == 0 && m.f == 0; } fz_matrix fz_concat(fz_matrix left, fz_matrix right); fz_matrix fz_scale(float sx, float sy); fz_matrix fz_pre_scale(fz_matrix m, float sx, float sy); fz_matrix fz_post_scale(fz_matrix m, float sx, float sy); fz_matrix fz_shear(float sx, float sy); fz_matrix fz_pre_shear(fz_matrix m, float sx, float sy); fz_matrix fz_rotate(float degrees); fz_matrix fz_pre_rotate(fz_matrix m, float degrees); fz_matrix fz_translate(float tx, float ty); fz_matrix fz_pre_translate(fz_matrix m, float tx, float ty); fz_matrix fz_transform_page(fz_rect mediabox, float resolution, float rotate); fz_matrix fz_invert_matrix(fz_matrix matrix); int fz_try_invert_matrix(fz_matrix *inv, fz_matrix src); int fz_is_rectilinear(fz_matrix m); float fz_matrix_expansion(fz_matrix m); fz_rect fz_intersect_rect(fz_rect a, fz_rect b); fz_irect fz_intersect_irect(fz_irect a, fz_irect b); fz_rect fz_union_rect(fz_rect a, fz_rect b); fz_irect fz_irect_from_rect(fz_rect rect); fz_irect fz_round_rect(fz_rect rect); fz_rect fz_rect_from_irect(fz_irect bbox); fz_rect fz_expand_rect(fz_rect b, float expand); fz_irect fz_expand_irect(fz_irect a, int expand); fz_rect fz_include_point_in_rect(fz_rect r, fz_point p); fz_rect fz_translate_rect(fz_rect a, float xoff, float yoff); fz_irect fz_translate_irect(fz_irect a, int xoff, int yoff); int fz_contains_rect(fz_rect a, fz_rect b); fz_point fz_transform_point(fz_point point, fz_matrix m); fz_point fz_transform_point_xy(float x, float y, fz_matrix m); fz_point fz_transform_vector(fz_point vector, fz_matrix m); fz_rect fz_transform_rect(fz_rect rect, fz_matrix m); fz_point fz_normalize_vector(fz_point p); fz_matrix fz_gridfit_matrix(int as_tiled, fz_matrix m); float fz_matrix_max_expansion(fz_matrix m); typedef struct fz_quad_s fz_quad; struct fz_quad_s { fz_point ul, ur, ll, lr; }; static inline fz_quad fz_make_quad( float ul_x, float ul_y, float ur_x, float ur_y, float ll_x, float ll_y, float lr_x, float lr_y) { fz_quad q = { { ul_x, ul_y }, { ur_x, ur_y }, { ll_x, ll_y }, { lr_x, lr_y }, }; return q; } fz_rect fz_rect_from_quad(fz_quad q); fz_quad fz_transform_quad(fz_quad q, fz_matrix m); int fz_is_point_inside_quad(fz_point p, fz_quad q); int fz_is_point_inside_rect(fz_point p, fz_rect r); int fz_is_point_inside_irect(int x, int y, fz_irect r); #endif