eBookReaderSwitch/source/xps/xps-gradient.c

528 lines
14 KiB
C
Raw Normal View History

#include "mupdf/fitz.h"
#include "xps-imp.h"
#include <string.h>
#include <math.h>
#include <float.h>
#include <stdlib.h>
#define MAX_STOPS 256
enum { SPREAD_PAD, SPREAD_REPEAT, SPREAD_REFLECT };
/*
* Parse a list of GradientStop elements.
* Fill the offset and color arrays, and
* return the number of stops parsed.
*/
struct stop
{
float offset;
float r, g, b, a;
int index;
};
static int cmp_stop(const void *a, const void *b)
{
const struct stop *astop = a;
const struct stop *bstop = b;
float diff = astop->offset - bstop->offset;
if (diff < 0)
return -1;
if (diff > 0)
return 1;
return astop->index - bstop->index;
}
static inline float lerp(float a, float b, float x)
{
return a + (b - a) * x;
}
static int
xps_parse_gradient_stops(fz_context *ctx, xps_document *doc, char *base_uri, fz_xml *node,
struct stop *stops, int maxcount)
{
fz_colorspace *colorspace;
float sample[FZ_MAX_COLORS];
float rgb[3];
int before, after;
int count;
int i;
/* We may have to insert 2 extra stops when postprocessing */
maxcount -= 2;
count = 0;
while (node && count < maxcount)
{
if (fz_xml_is_tag(node, "GradientStop"))
{
char *offset = fz_xml_att(node, "Offset");
char *color = fz_xml_att(node, "Color");
if (offset && color)
{
stops[count].offset = fz_atof(offset);
stops[count].index = count;
xps_parse_color(ctx, doc, base_uri, color, &colorspace, sample);
fz_convert_color(ctx, colorspace, sample+1, fz_device_rgb(ctx), rgb, NULL, fz_default_color_params);
stops[count].r = rgb[0];
stops[count].g = rgb[1];
stops[count].b = rgb[2];
stops[count].a = sample[0];
count ++;
}
}
node = fz_xml_next(node);
}
if (count == 0)
{
fz_warn(ctx, "gradient brush has no gradient stops");
stops[0].offset = 0;
stops[0].r = 0;
stops[0].g = 0;
stops[0].b = 0;
stops[0].a = 1;
stops[1].offset = 1;
stops[1].r = 1;
stops[1].g = 1;
stops[1].b = 1;
stops[1].a = 1;
return 2;
}
if (count == maxcount)
fz_warn(ctx, "gradient brush exceeded maximum number of gradient stops");
/* Postprocess to make sure the range of offsets is 0.0 to 1.0 */
qsort(stops, count, sizeof(struct stop), cmp_stop);
before = -1;
after = -1;
for (i = 0; i < count; i++)
{
if (stops[i].offset < 0)
before = i;
if (stops[i].offset > 1)
{
after = i;
break;
}
}
/* Remove all stops < 0 except the largest one */
if (before > 0)
{
memmove(stops, stops + before, (count - before) * sizeof(struct stop));
count -= before;
}
/* Remove all stops > 1 except the smallest one */
if (after >= 0)
count = after + 1;
/* Expand single stop to 0 .. 1 */
if (count == 1)
{
stops[1] = stops[0];
stops[0].offset = 0;
stops[1].offset = 1;
return 2;
}
/* First stop < 0 -- interpolate value to 0 */
if (stops[0].offset < 0)
{
float d = -stops[0].offset / (stops[1].offset - stops[0].offset);
stops[0].offset = 0;
stops[0].r = lerp(stops[0].r, stops[1].r, d);
stops[0].g = lerp(stops[0].g, stops[1].g, d);
stops[0].b = lerp(stops[0].b, stops[1].b, d);
stops[0].a = lerp(stops[0].a, stops[1].a, d);
}
/* Last stop > 1 -- interpolate value to 1 */
if (stops[count-1].offset > 1)
{
float d = (1 - stops[count-2].offset) / (stops[count-1].offset - stops[count-2].offset);
stops[count-1].offset = 1;
stops[count-1].r = lerp(stops[count-2].r, stops[count-1].r, d);
stops[count-1].g = lerp(stops[count-2].g, stops[count-1].g, d);
stops[count-1].b = lerp(stops[count-2].b, stops[count-1].b, d);
stops[count-1].a = lerp(stops[count-2].a, stops[count-1].a, d);
}
/* First stop > 0 -- insert a duplicate at 0 */
if (stops[0].offset > 0)
{
memmove(stops + 1, stops, count * sizeof(struct stop));
stops[0] = stops[1];
stops[0].offset = 0;
count++;
}
/* Last stop < 1 -- insert a duplicate at 1 */
if (stops[count-1].offset < 1)
{
stops[count] = stops[count-1];
stops[count].offset = 1;
count++;
}
return count;
}
static void
xps_sample_gradient_stops(fz_context *ctx, xps_document *doc, fz_shade *shade, struct stop *stops, int count)
{
float offset, d;
int i, k;
k = 0;
for (i = 0; i < 256; i++)
{
offset = i / 255.0f;
while (k + 1 < count && offset > stops[k+1].offset)
k++;
d = (offset - stops[k].offset) / (stops[k+1].offset - stops[k].offset);
shade->function[i][0] = lerp(stops[k].r, stops[k+1].r, d);
shade->function[i][1] = lerp(stops[k].g, stops[k+1].g, d);
shade->function[i][2] = lerp(stops[k].b, stops[k+1].b, d);
shade->function[i][3] = lerp(stops[k].a, stops[k+1].a, d);
}
}
/*
* Radial gradients map more or less to Radial shadings.
* The inner circle is always a point.
* The outer circle is actually an ellipse,
* mess with the transform to squash the circle into the right aspect.
*/
static void
xps_draw_one_radial_gradient(fz_context *ctx, xps_document *doc, fz_matrix ctm,
struct stop *stops, int count,
int extend,
float x0, float y0, float r0,
float x1, float y1, float r1)
{
fz_device *dev = doc->dev;
fz_shade *shade;
shade = fz_malloc_struct(ctx, fz_shade);
FZ_INIT_STORABLE(shade, 1, fz_drop_shade_imp);
shade->colorspace = fz_keep_colorspace(ctx, fz_device_rgb(ctx));
shade->bbox = fz_infinite_rect;
shade->matrix = fz_identity;
shade->use_background = 0;
shade->use_function = 1;
shade->type = FZ_RADIAL;
shade->u.l_or_r.extend[0] = extend;
shade->u.l_or_r.extend[1] = extend;
shade->u.l_or_r.coords[0][0] = x0;
shade->u.l_or_r.coords[0][1] = y0;
shade->u.l_or_r.coords[0][2] = r0;
shade->u.l_or_r.coords[1][0] = x1;
shade->u.l_or_r.coords[1][1] = y1;
shade->u.l_or_r.coords[1][2] = r1;
fz_try(ctx)
{
xps_sample_gradient_stops(ctx, doc, shade, stops, count);
fz_fill_shade(ctx, dev, shade, ctm, 1, fz_default_color_params);
}
fz_always(ctx)
fz_drop_shade(ctx, shade);
fz_catch(ctx)
fz_rethrow(ctx);
}
/*
* Linear gradients.
*/
static void
xps_draw_one_linear_gradient(fz_context *ctx, xps_document *doc, fz_matrix ctm,
struct stop *stops, int count,
int extend,
float x0, float y0, float x1, float y1)
{
fz_device *dev = doc->dev;
fz_shade *shade;
shade = fz_malloc_struct(ctx, fz_shade);
FZ_INIT_STORABLE(shade, 1, fz_drop_shade_imp);
shade->colorspace = fz_keep_colorspace(ctx, fz_device_rgb(ctx));
shade->bbox = fz_infinite_rect;
shade->matrix = fz_identity;
shade->use_background = 0;
shade->use_function = 1;
shade->type = FZ_LINEAR;
shade->u.l_or_r.extend[0] = extend;
shade->u.l_or_r.extend[1] = extend;
shade->u.l_or_r.coords[0][0] = x0;
shade->u.l_or_r.coords[0][1] = y0;
shade->u.l_or_r.coords[0][2] = 0;
shade->u.l_or_r.coords[1][0] = x1;
shade->u.l_or_r.coords[1][1] = y1;
shade->u.l_or_r.coords[1][2] = 0;
fz_try(ctx)
{
xps_sample_gradient_stops(ctx, doc, shade, stops, count);
fz_fill_shade(ctx, dev, shade, ctm, doc->opacity[doc->opacity_top], fz_default_color_params);
}
fz_always(ctx)
fz_drop_shade(ctx, shade);
fz_catch(ctx)
fz_rethrow(ctx);
}
/*
* We need to loop and create many shading objects to account
* for the Repeat and Reflect SpreadMethods.
* I'm not smart enough to calculate this analytically
* so we iterate and check each object until we
* reach a reasonable limit for infinite cases.
*/
static void
xps_draw_radial_gradient(fz_context *ctx, xps_document *doc, fz_matrix ctm, fz_rect area,
struct stop *stops, int count,
fz_xml *root, int spread)
{
float x0, y0, r0;
float x1, y1, r1;
float xrad = 1;
float yrad = 1;
float invscale;
int i, ma = 1;
fz_matrix inv;
char *center_att = fz_xml_att(root, "Center");
char *origin_att = fz_xml_att(root, "GradientOrigin");
char *radius_x_att = fz_xml_att(root, "RadiusX");
char *radius_y_att = fz_xml_att(root, "RadiusY");
x0 = y0 = 0.0f;
x1 = y1 = 1.0f;
xrad = 1.0f;
yrad = 1.0f;
if (origin_att)
xps_parse_point(ctx, doc, origin_att, &x0, &y0);
if (center_att)
xps_parse_point(ctx, doc, center_att, &x1, &y1);
if (radius_x_att)
xrad = fz_atof(radius_x_att);
if (radius_y_att)
yrad = fz_atof(radius_y_att);
xrad = fz_max(0.01f, xrad);
yrad = fz_max(0.01f, yrad);
/* scale the ctm to make ellipses */
if (fz_abs(xrad) > FLT_EPSILON)
{
ctm = fz_pre_scale(ctm, 1, yrad/xrad);
}
if (yrad != 0.0f)
{
invscale = xrad / yrad;
y0 = y0 * invscale;
y1 = y1 * invscale;
}
r0 = 0;
r1 = xrad;
inv = fz_invert_matrix(ctm);
area = fz_transform_rect(area, inv);
ma = fz_maxi(ma, ceilf(hypotf(area.x0 - x0, area.y0 - y0) / xrad));
ma = fz_maxi(ma, ceilf(hypotf(area.x1 - x0, area.y0 - y0) / xrad));
ma = fz_maxi(ma, ceilf(hypotf(area.x0 - x0, area.y1 - y0) / xrad));
ma = fz_maxi(ma, ceilf(hypotf(area.x1 - x0, area.y1 - y0) / xrad));
if (spread == SPREAD_REPEAT)
{
for (i = ma - 1; i >= 0; i--)
xps_draw_one_radial_gradient(ctx, doc, ctm, stops, count, 0, x0, y0, r0 + i * xrad, x1, y1, r1 + i * xrad);
}
else if (spread == SPREAD_REFLECT)
{
if ((ma % 2) != 0)
ma++;
for (i = ma - 2; i >= 0; i -= 2)
{
xps_draw_one_radial_gradient(ctx, doc, ctm, stops, count, 0, x0, y0, r0 + i * xrad, x1, y1, r1 + i * xrad);
xps_draw_one_radial_gradient(ctx, doc, ctm, stops, count, 0, x0, y0, r0 + (i + 2) * xrad, x1, y1, r1 + i * xrad);
}
}
else
{
xps_draw_one_radial_gradient(ctx, doc, ctm, stops, count, 1, x0, y0, r0, x1, y1, r1);
}
}
/*
* Calculate how many iterations are needed to cover
* the bounding box.
*/
static void
xps_draw_linear_gradient(fz_context *ctx, xps_document *doc, fz_matrix ctm, fz_rect area,
struct stop *stops, int count,
fz_xml *root, int spread)
{
float x0, y0, x1, y1;
int i, mi, ma;
float dx, dy, x, y, k;
fz_point p1, p2;
fz_matrix inv;
char *start_point_att = fz_xml_att(root, "StartPoint");
char *end_point_att = fz_xml_att(root, "EndPoint");
x0 = y0 = 0;
x1 = y1 = 1;
if (start_point_att)
xps_parse_point(ctx, doc, start_point_att, &x0, &y0);
if (end_point_att)
xps_parse_point(ctx, doc, end_point_att, &x1, &y1);
p1.x = x0; p1.y = y0; p2.x = x1; p2.y = y1;
inv = fz_invert_matrix(ctm);
area = fz_transform_rect(area, inv);
x = p2.x - p1.x; y = p2.y - p1.y;
k = ((area.x0 - p1.x) * x + (area.y0 - p1.y) * y) / (x * x + y * y);
mi = floorf(k); ma = ceilf(k);
k = ((area.x1 - p1.x) * x + (area.y0 - p1.y) * y) / (x * x + y * y);
mi = fz_mini(mi, floorf(k)); ma = fz_maxi(ma, ceilf(k));
k = ((area.x0 - p1.x) * x + (area.y1 - p1.y) * y) / (x * x + y * y);
mi = fz_mini(mi, floorf(k)); ma = fz_maxi(ma, ceilf(k));
k = ((area.x1 - p1.x) * x + (area.y1 - p1.y) * y) / (x * x + y * y);
mi = fz_mini(mi, floorf(k)); ma = fz_maxi(ma, ceilf(k));
dx = x1 - x0; dy = y1 - y0;
if (spread == SPREAD_REPEAT)
{
for (i = mi; i < ma; i++)
xps_draw_one_linear_gradient(ctx, doc, ctm, stops, count, 0, x0 + i * dx, y0 + i * dy, x1 + i * dx, y1 + i * dy);
}
else if (spread == SPREAD_REFLECT)
{
if ((mi % 2) != 0)
mi--;
for (i = mi; i < ma; i += 2)
{
xps_draw_one_linear_gradient(ctx, doc, ctm, stops, count, 0, x0 + i * dx, y0 + i * dy, x1 + i * dx, y1 + i * dy);
xps_draw_one_linear_gradient(ctx, doc, ctm, stops, count, 0, x0 + (i + 2) * dx, y0 + (i + 2) * dy, x1 + i * dx, y1 + i * dy);
}
}
else
{
xps_draw_one_linear_gradient(ctx, doc, ctm, stops, count, 1, x0, y0, x1, y1);
}
}
/*
* Parse XML tag and attributes for a gradient brush, create color/opacity
* function objects and call gradient drawing primitives.
*/
static void
xps_parse_gradient_brush(fz_context *ctx, xps_document *doc, fz_matrix ctm, fz_rect area,
char *base_uri, xps_resource *dict, fz_xml *root,
void (*draw)(fz_context *ctx, xps_document *, fz_matrix, fz_rect, struct stop *, int, fz_xml *, int))
{
fz_xml *node;
char *opacity_att;
char *spread_att;
char *transform_att;
fz_xml *transform_tag = NULL;
fz_xml *stop_tag = NULL;
struct stop stop_list[MAX_STOPS];
int stop_count;
int spread_method;
opacity_att = fz_xml_att(root, "Opacity");
spread_att = fz_xml_att(root, "SpreadMethod");
transform_att = fz_xml_att(root, "Transform");
for (node = fz_xml_down(root); node; node = fz_xml_next(node))
{
if (fz_xml_is_tag(node, "LinearGradientBrush.Transform"))
transform_tag = fz_xml_down(node);
if (fz_xml_is_tag(node, "RadialGradientBrush.Transform"))
transform_tag = fz_xml_down(node);
if (fz_xml_is_tag(node, "LinearGradientBrush.GradientStops"))
stop_tag = fz_xml_down(node);
if (fz_xml_is_tag(node, "RadialGradientBrush.GradientStops"))
stop_tag = fz_xml_down(node);
}
xps_resolve_resource_reference(ctx, doc, dict, &transform_att, &transform_tag, NULL);
spread_method = SPREAD_PAD;
if (spread_att)
{
if (!strcmp(spread_att, "Pad"))
spread_method = SPREAD_PAD;
if (!strcmp(spread_att, "Reflect"))
spread_method = SPREAD_REFLECT;
if (!strcmp(spread_att, "Repeat"))
spread_method = SPREAD_REPEAT;
}
ctm = xps_parse_transform(ctx, doc, transform_att, transform_tag, ctm);
if (!stop_tag) {
fz_warn(ctx, "missing gradient stops tag");
return;
}
stop_count = xps_parse_gradient_stops(ctx, doc, base_uri, stop_tag, stop_list, MAX_STOPS);
if (stop_count == 0)
{
fz_warn(ctx, "no gradient stops found");
return;
}
xps_begin_opacity(ctx, doc, ctm, area, base_uri, dict, opacity_att, NULL);
draw(ctx, doc, ctm, area, stop_list, stop_count, root, spread_method);
xps_end_opacity(ctx, doc, base_uri, dict, opacity_att, NULL);
}
void
xps_parse_linear_gradient_brush(fz_context *ctx, xps_document *doc, fz_matrix ctm, fz_rect area,
char *base_uri, xps_resource *dict, fz_xml *root)
{
xps_parse_gradient_brush(ctx, doc, ctm, area, base_uri, dict, root, xps_draw_linear_gradient);
}
void
xps_parse_radial_gradient_brush(fz_context *ctx, xps_document *doc, fz_matrix ctm, fz_rect area,
char *base_uri, xps_resource *dict, fz_xml *root)
{
xps_parse_gradient_brush(ctx, doc, ctm, area, base_uri, dict, root, xps_draw_radial_gradient);
}