309 lines
9.3 KiB
C
309 lines
9.3 KiB
C
|
/*
|
||
|
* !checksrc! disable COPYRIGHT
|
||
|
* This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
|
||
|
* MD4 Message-Digest Algorithm (RFC 1320).
|
||
|
*
|
||
|
* Homepage:
|
||
|
https://openwall.info/wiki/people/solar/software/public-domain-source-code/md4
|
||
|
*
|
||
|
* Author:
|
||
|
* Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
|
||
|
*
|
||
|
* This software was written by Alexander Peslyak in 2001. No copyright is
|
||
|
* claimed, and the software is hereby placed in the public domain. In case
|
||
|
* this attempt to disclaim copyright and place the software in the public
|
||
|
* domain is deemed null and void, then the software is Copyright (c) 2001
|
||
|
* Alexander Peslyak and it is hereby released to the general public under the
|
||
|
* following terms:
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted.
|
||
|
*
|
||
|
* There's ABSOLUTELY NO WARRANTY, express or implied.
|
||
|
*
|
||
|
* (This is a heavily cut-down "BSD license".)
|
||
|
*
|
||
|
* This differs from Colin Plumb's older public domain implementation in that
|
||
|
* no exactly 32-bit integer data type is required (any 32-bit or wider
|
||
|
* unsigned integer data type will do), there's no compile-time endianness
|
||
|
* configuration, and the function prototypes match OpenSSL's. No code from
|
||
|
* Colin Plumb's implementation has been reused; this comment merely compares
|
||
|
* the properties of the two independent implementations.
|
||
|
*
|
||
|
* The primary goals of this implementation are portability and ease of use.
|
||
|
* It is meant to be fast, but not as fast as possible. Some known
|
||
|
* optimizations are not included to reduce source code size and avoid
|
||
|
* compile-time configuration.
|
||
|
*/
|
||
|
|
||
|
#include "curl_setup.h"
|
||
|
|
||
|
/* The NSS, OS/400 and sometimes mbed TLS crypto libraries do not provide the
|
||
|
* MD4 hash algorithm, so we have a local implementation of it */
|
||
|
#if defined(USE_NSS) || defined(USE_OS400CRYPTO) || \
|
||
|
(defined(USE_MBEDTLS) && !defined(MBEDTLS_MD4_C))
|
||
|
|
||
|
#include "curl_md4.h"
|
||
|
#include "warnless.h"
|
||
|
|
||
|
#ifndef HAVE_OPENSSL
|
||
|
|
||
|
#include <string.h>
|
||
|
|
||
|
/* Any 32-bit or wider unsigned integer data type will do */
|
||
|
typedef unsigned int MD4_u32plus;
|
||
|
|
||
|
typedef struct {
|
||
|
MD4_u32plus lo, hi;
|
||
|
MD4_u32plus a, b, c, d;
|
||
|
unsigned char buffer[64];
|
||
|
MD4_u32plus block[16];
|
||
|
} MD4_CTX;
|
||
|
|
||
|
static void MD4_Init(MD4_CTX *ctx);
|
||
|
static void MD4_Update(MD4_CTX *ctx, const void *data, unsigned long size);
|
||
|
static void MD4_Final(unsigned char *result, MD4_CTX *ctx);
|
||
|
|
||
|
/*
|
||
|
* The basic MD4 functions.
|
||
|
*
|
||
|
* F and G are optimized compared to their RFC 1320 definitions, with the
|
||
|
* optimization for F borrowed from Colin Plumb's MD5 implementation.
|
||
|
*/
|
||
|
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
|
||
|
#define G(x, y, z) (((x) & ((y) | (z))) | ((y) & (z)))
|
||
|
#define H(x, y, z) ((x) ^ (y) ^ (z))
|
||
|
|
||
|
/*
|
||
|
* The MD4 transformation for all three rounds.
|
||
|
*/
|
||
|
#define STEP(f, a, b, c, d, x, s) \
|
||
|
(a) += f((b), (c), (d)) + (x); \
|
||
|
(a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s))));
|
||
|
|
||
|
/*
|
||
|
* SET reads 4 input bytes in little-endian byte order and stores them
|
||
|
* in a properly aligned word in host byte order.
|
||
|
*
|
||
|
* The check for little-endian architectures that tolerate unaligned
|
||
|
* memory accesses is just an optimization. Nothing will break if it
|
||
|
* doesn't work.
|
||
|
*/
|
||
|
#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
|
||
|
#define SET(n) \
|
||
|
(*(MD4_u32plus *)(void *)&ptr[(n) * 4])
|
||
|
#define GET(n) \
|
||
|
SET(n)
|
||
|
#else
|
||
|
#define SET(n) \
|
||
|
(ctx->block[(n)] = \
|
||
|
(MD4_u32plus)ptr[(n) * 4] | \
|
||
|
((MD4_u32plus)ptr[(n) * 4 + 1] << 8) | \
|
||
|
((MD4_u32plus)ptr[(n) * 4 + 2] << 16) | \
|
||
|
((MD4_u32plus)ptr[(n) * 4 + 3] << 24))
|
||
|
#define GET(n) \
|
||
|
(ctx->block[(n)])
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* This processes one or more 64-byte data blocks, but does NOT update
|
||
|
* the bit counters. There are no alignment requirements.
|
||
|
*/
|
||
|
static const void *body(MD4_CTX *ctx, const void *data, unsigned long size)
|
||
|
{
|
||
|
const unsigned char *ptr;
|
||
|
MD4_u32plus a, b, c, d;
|
||
|
MD4_u32plus saved_a, saved_b, saved_c, saved_d;
|
||
|
|
||
|
ptr = (const unsigned char *)data;
|
||
|
|
||
|
a = ctx->a;
|
||
|
b = ctx->b;
|
||
|
c = ctx->c;
|
||
|
d = ctx->d;
|
||
|
|
||
|
do {
|
||
|
saved_a = a;
|
||
|
saved_b = b;
|
||
|
saved_c = c;
|
||
|
saved_d = d;
|
||
|
|
||
|
/* Round 1 */
|
||
|
STEP(F, a, b, c, d, SET(0), 3)
|
||
|
STEP(F, d, a, b, c, SET(1), 7)
|
||
|
STEP(F, c, d, a, b, SET(2), 11)
|
||
|
STEP(F, b, c, d, a, SET(3), 19)
|
||
|
STEP(F, a, b, c, d, SET(4), 3)
|
||
|
STEP(F, d, a, b, c, SET(5), 7)
|
||
|
STEP(F, c, d, a, b, SET(6), 11)
|
||
|
STEP(F, b, c, d, a, SET(7), 19)
|
||
|
STEP(F, a, b, c, d, SET(8), 3)
|
||
|
STEP(F, d, a, b, c, SET(9), 7)
|
||
|
STEP(F, c, d, a, b, SET(10), 11)
|
||
|
STEP(F, b, c, d, a, SET(11), 19)
|
||
|
STEP(F, a, b, c, d, SET(12), 3)
|
||
|
STEP(F, d, a, b, c, SET(13), 7)
|
||
|
STEP(F, c, d, a, b, SET(14), 11)
|
||
|
STEP(F, b, c, d, a, SET(15), 19)
|
||
|
|
||
|
/* Round 2 */
|
||
|
STEP(G, a, b, c, d, GET(0) + 0x5a827999, 3)
|
||
|
STEP(G, d, a, b, c, GET(4) + 0x5a827999, 5)
|
||
|
STEP(G, c, d, a, b, GET(8) + 0x5a827999, 9)
|
||
|
STEP(G, b, c, d, a, GET(12) + 0x5a827999, 13)
|
||
|
STEP(G, a, b, c, d, GET(1) + 0x5a827999, 3)
|
||
|
STEP(G, d, a, b, c, GET(5) + 0x5a827999, 5)
|
||
|
STEP(G, c, d, a, b, GET(9) + 0x5a827999, 9)
|
||
|
STEP(G, b, c, d, a, GET(13) + 0x5a827999, 13)
|
||
|
STEP(G, a, b, c, d, GET(2) + 0x5a827999, 3)
|
||
|
STEP(G, d, a, b, c, GET(6) + 0x5a827999, 5)
|
||
|
STEP(G, c, d, a, b, GET(10) + 0x5a827999, 9)
|
||
|
STEP(G, b, c, d, a, GET(14) + 0x5a827999, 13)
|
||
|
STEP(G, a, b, c, d, GET(3) + 0x5a827999, 3)
|
||
|
STEP(G, d, a, b, c, GET(7) + 0x5a827999, 5)
|
||
|
STEP(G, c, d, a, b, GET(11) + 0x5a827999, 9)
|
||
|
STEP(G, b, c, d, a, GET(15) + 0x5a827999, 13)
|
||
|
|
||
|
/* Round 3 */
|
||
|
STEP(H, a, b, c, d, GET(0) + 0x6ed9eba1, 3)
|
||
|
STEP(H, d, a, b, c, GET(8) + 0x6ed9eba1, 9)
|
||
|
STEP(H, c, d, a, b, GET(4) + 0x6ed9eba1, 11)
|
||
|
STEP(H, b, c, d, a, GET(12) + 0x6ed9eba1, 15)
|
||
|
STEP(H, a, b, c, d, GET(2) + 0x6ed9eba1, 3)
|
||
|
STEP(H, d, a, b, c, GET(10) + 0x6ed9eba1, 9)
|
||
|
STEP(H, c, d, a, b, GET(6) + 0x6ed9eba1, 11)
|
||
|
STEP(H, b, c, d, a, GET(14) + 0x6ed9eba1, 15)
|
||
|
STEP(H, a, b, c, d, GET(1) + 0x6ed9eba1, 3)
|
||
|
STEP(H, d, a, b, c, GET(9) + 0x6ed9eba1, 9)
|
||
|
STEP(H, c, d, a, b, GET(5) + 0x6ed9eba1, 11)
|
||
|
STEP(H, b, c, d, a, GET(13) + 0x6ed9eba1, 15)
|
||
|
STEP(H, a, b, c, d, GET(3) + 0x6ed9eba1, 3)
|
||
|
STEP(H, d, a, b, c, GET(11) + 0x6ed9eba1, 9)
|
||
|
STEP(H, c, d, a, b, GET(7) + 0x6ed9eba1, 11)
|
||
|
STEP(H, b, c, d, a, GET(15) + 0x6ed9eba1, 15)
|
||
|
|
||
|
a += saved_a;
|
||
|
b += saved_b;
|
||
|
c += saved_c;
|
||
|
d += saved_d;
|
||
|
|
||
|
ptr += 64;
|
||
|
} while(size -= 64);
|
||
|
|
||
|
ctx->a = a;
|
||
|
ctx->b = b;
|
||
|
ctx->c = c;
|
||
|
ctx->d = d;
|
||
|
|
||
|
return ptr;
|
||
|
}
|
||
|
|
||
|
static void MD4_Init(MD4_CTX *ctx)
|
||
|
{
|
||
|
ctx->a = 0x67452301;
|
||
|
ctx->b = 0xefcdab89;
|
||
|
ctx->c = 0x98badcfe;
|
||
|
ctx->d = 0x10325476;
|
||
|
|
||
|
ctx->lo = 0;
|
||
|
ctx->hi = 0;
|
||
|
}
|
||
|
|
||
|
static void MD4_Update(MD4_CTX *ctx, const void *data, unsigned long size)
|
||
|
{
|
||
|
MD4_u32plus saved_lo;
|
||
|
unsigned long used, available;
|
||
|
|
||
|
saved_lo = ctx->lo;
|
||
|
ctx->lo = (saved_lo + size) & 0x1fffffff;
|
||
|
if(ctx->lo < saved_lo)
|
||
|
ctx->hi++;
|
||
|
ctx->hi += (MD4_u32plus)size >> 29;
|
||
|
|
||
|
used = saved_lo & 0x3f;
|
||
|
|
||
|
if(used) {
|
||
|
available = 64 - used;
|
||
|
|
||
|
if(size < available) {
|
||
|
memcpy(&ctx->buffer[used], data, size);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
memcpy(&ctx->buffer[used], data, available);
|
||
|
data = (const unsigned char *)data + available;
|
||
|
size -= available;
|
||
|
body(ctx, ctx->buffer, 64);
|
||
|
}
|
||
|
|
||
|
if(size >= 64) {
|
||
|
data = body(ctx, data, size & ~(unsigned long)0x3f);
|
||
|
size &= 0x3f;
|
||
|
}
|
||
|
|
||
|
memcpy(ctx->buffer, data, size);
|
||
|
}
|
||
|
|
||
|
static void MD4_Final(unsigned char *result, MD4_CTX *ctx)
|
||
|
{
|
||
|
unsigned long used, available;
|
||
|
|
||
|
used = ctx->lo & 0x3f;
|
||
|
|
||
|
ctx->buffer[used++] = 0x80;
|
||
|
|
||
|
available = 64 - used;
|
||
|
|
||
|
if(available < 8) {
|
||
|
memset(&ctx->buffer[used], 0, available);
|
||
|
body(ctx, ctx->buffer, 64);
|
||
|
used = 0;
|
||
|
available = 64;
|
||
|
}
|
||
|
|
||
|
memset(&ctx->buffer[used], 0, available - 8);
|
||
|
|
||
|
ctx->lo <<= 3;
|
||
|
ctx->buffer[56] = curlx_ultouc((ctx->lo)&0xff);
|
||
|
ctx->buffer[57] = curlx_ultouc((ctx->lo >> 8)&0xff);
|
||
|
ctx->buffer[58] = curlx_ultouc((ctx->lo >> 16)&0xff);
|
||
|
ctx->buffer[59] = curlx_ultouc((ctx->lo >> 24)&0xff);
|
||
|
ctx->buffer[60] = curlx_ultouc((ctx->hi)&0xff);
|
||
|
ctx->buffer[61] = curlx_ultouc((ctx->hi >> 8)&0xff);
|
||
|
ctx->buffer[62] = curlx_ultouc((ctx->hi >> 16)&0xff);
|
||
|
ctx->buffer[63] = curlx_ultouc(ctx->hi >> 24);
|
||
|
|
||
|
body(ctx, ctx->buffer, 64);
|
||
|
|
||
|
result[0] = curlx_ultouc((ctx->a)&0xff);
|
||
|
result[1] = curlx_ultouc((ctx->a >> 8)&0xff);
|
||
|
result[2] = curlx_ultouc((ctx->a >> 16)&0xff);
|
||
|
result[3] = curlx_ultouc(ctx->a >> 24);
|
||
|
result[4] = curlx_ultouc((ctx->b)&0xff);
|
||
|
result[5] = curlx_ultouc((ctx->b >> 8)&0xff);
|
||
|
result[6] = curlx_ultouc((ctx->b >> 16)&0xff);
|
||
|
result[7] = curlx_ultouc(ctx->b >> 24);
|
||
|
result[8] = curlx_ultouc((ctx->c)&0xff);
|
||
|
result[9] = curlx_ultouc((ctx->c >> 8)&0xff);
|
||
|
result[10] = curlx_ultouc((ctx->c >> 16)&0xff);
|
||
|
result[11] = curlx_ultouc(ctx->c >> 24);
|
||
|
result[12] = curlx_ultouc((ctx->d)&0xff);
|
||
|
result[13] = curlx_ultouc((ctx->d >> 8)&0xff);
|
||
|
result[14] = curlx_ultouc((ctx->d >> 16)&0xff);
|
||
|
result[15] = curlx_ultouc(ctx->d >> 24);
|
||
|
|
||
|
memset(ctx, 0, sizeof(*ctx));
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
void Curl_md4it(unsigned char *output, const unsigned char *input, size_t len)
|
||
|
{
|
||
|
MD4_CTX ctx;
|
||
|
MD4_Init(&ctx);
|
||
|
MD4_Update(&ctx, input, curlx_uztoui(len));
|
||
|
MD4_Final(output, &ctx);
|
||
|
}
|
||
|
#endif /* defined(USE_NSS) || defined(USE_OS400CRYPTO) ||
|
||
|
(defined(USE_MBEDTLS) && !defined(MBEDTLS_MD4_C)) */
|