eBookReaderSwitch/mupdf/source/fitz/draw-imp.h

453 lines
15 KiB
C
Raw Normal View History

#ifndef MUPDF_DRAW_IMP_H
#define MUPDF_DRAW_IMP_H
#define BBOX_MIN -(1<<20)
#define BBOX_MAX (1<<20)
/* divide and floor towards -inf */
static inline int fz_idiv(int a, int b)
{
return a < 0 ? (a - b + 1) / b : a / b;
}
/* divide and ceil towards inf */
static inline int fz_idiv_up(int a, int b)
{
return a < 0 ? a / b : (a + b - 1) / b;
}
#ifdef AA_BITS
#define fz_aa_scale 0
#define fz_rasterizer_aa_scale(ras) 0
#if AA_BITS > 6
#define AA_SCALE(s, x) (x)
#define fz_aa_hscale 17
#define fz_aa_vscale 15
#define fz_aa_bits 8
#define fz_aa_text_bits 8
#define fz_rasterizer_aa_hscale(ras) 17
#define fz_rasterizer_aa_vscale(ras) 15
#define fz_rasterizer_aa_bits(ras) 8
#define fz_rasterizer_aa_text_bits(ras) 8
#elif AA_BITS > 4
#define AA_SCALE(s, x) ((x * 255) >> 6)
#define fz_aa_hscale 8
#define fz_aa_vscale 8
#define fz_aa_bits 6
#define fz_aa_text_bits 6
#define fz_rasterizer_aa_hscale(ras) 8
#define fz_rasterizer_aa_vscale(ras) 8
#define fz_rasterizer_aa_bits(ras) 6
#define fz_rasterizer_aa_text_bits(ras) 6
#elif AA_BITS > 2
#define AA_SCALE(s, x) (x * 17)
#define fz_aa_hscale 5
#define fz_aa_vscale 3
#define fz_aa_bits 4
#define fz_aa_text_bits 4
#define fz_rasterizer_aa_hscale(ras) 5
#define fz_rasterizer_aa_vscale(ras) 3
#define fz_rasterizer_aa_bits(ras) 4
#define fz_rasterizer_aa_text_bits(ras) 4
#elif AA_BITS > 0
#define AA_SCALE(s, x) ((x * 255) >> 2)
#define fz_aa_hscale 2
#define fz_aa_vscale 2
#define fz_aa_bits 2
#define fz_aa_text_bits 2
#define fz_rasterizer_aa_hscale(ras) 2
#define fz_rasterizer_aa_vscale(ras) 2
#define fz_rasterizer_aa_bits(ras) 2
#define fz_rasterizer_aa_text_bits(ras) 2
#else
#define AA_SCALE(s, x) (x * 255)
#define fz_aa_hscale 1
#define fz_aa_vscale 1
#define fz_aa_bits 0
#define fz_aa_text_bits 0
#define fz_rasterizer_aa_hscale(ras) 1
#define fz_rasterizer_aa_vscale(ras) 1
#define fz_rasterizer_aa_bits(ras) 0
#define fz_rasterizer_aa_text_bits(ras) 0
#endif
#else
#define AA_SCALE(scale, x) ((x * scale) >> 8)
#define fz_aa_hscale (ctx->aa.hscale)
#define fz_aa_vscale (ctx->aa.vscale)
#define fz_aa_scale (ctx->aa.scale)
#define fz_aa_bits (ctx->aa.bits)
#define fz_aa_text_bits (ctx->aa.text_bits)
#define fz_rasterizer_aa_hscale(ras) ((ras)->aa.hscale)
#define fz_rasterizer_aa_vscale(ras) ((ras)->aa.vscale)
#define fz_rasterizer_aa_scale(ras) ((ras)->aa.scale)
#define fz_rasterizer_aa_bits(ras) ((ras)->aa.bits)
#define fz_rasterizer_aa_text_bits(ras) ((ras)->aa.text_bits)
#endif
/* If AA_BITS is defined, then we assume constant N bits of antialiasing. We
* will attempt to provide at least that number of bits of accuracy in the
* antialiasing (to a maximum of 8). If it is defined to be 0 then no
* antialiasing is done. If it is undefined to we will leave the antialiasing
* accuracy as a run time choice.
*/
struct fz_overprint_s
{
/* Bit i set -> never alter this color */
uint32_t mask[(FZ_MAX_COLORS+31)/32];
};
static void inline fz_set_overprint(fz_overprint *op, int i)
{
op->mask[i>>5] |= 1<<(i&31);
}
static int inline fz_overprint_component(const fz_overprint *op, int i)
{
return ((op->mask[i>>5]>>(i & 31)) & 1) == 0;
}
static int inline fz_overprint_required(const fz_overprint *op)
{
int i;
if (op == NULL)
return 0;
for (i = 0; i < (FZ_MAX_COLORS+31)/32; i++)
if (op->mask[i] != 0)
return 1;
return 0;
}
typedef struct fz_rasterizer_s fz_rasterizer;
typedef void (fz_rasterizer_drop_fn)(fz_context *ctx, fz_rasterizer *r);
typedef int (fz_rasterizer_reset_fn)(fz_context *ctx, fz_rasterizer *r);
typedef void (fz_rasterizer_postindex_fn)(fz_context *ctx, fz_rasterizer *r);
typedef void (fz_rasterizer_insert_fn)(fz_context *ctx, fz_rasterizer *r, float x0, float y0, float x1, float y1, int rev);
typedef void (fz_rasterizer_insert_rect_fn)(fz_context *ctx, fz_rasterizer *r, float fx0, float fy0, float fx1, float fy1);
typedef void (fz_rasterizer_gap_fn)(fz_context *ctx, fz_rasterizer *r);
typedef fz_irect *(fz_rasterizer_bound_fn)(fz_context *ctx, const fz_rasterizer *r, fz_irect *bbox);
typedef void (fz_rasterizer_fn)(fz_context *ctx, fz_rasterizer *r, int eofill, const fz_irect *clip, fz_pixmap *pix, unsigned char *colorbv, fz_overprint *eop);
typedef int (fz_rasterizer_is_rect_fn)(fz_context *ctx, fz_rasterizer *r);
typedef struct
{
fz_rasterizer_drop_fn *drop;
fz_rasterizer_reset_fn *reset;
fz_rasterizer_postindex_fn *postindex;
fz_rasterizer_insert_fn *insert;
fz_rasterizer_insert_rect_fn *rect;
fz_rasterizer_gap_fn *gap;
fz_rasterizer_fn *convert;
fz_rasterizer_is_rect_fn *is_rect;
int reusable;
} fz_rasterizer_fns;
struct fz_rasterizer_s
{
fz_rasterizer_fns fns;
fz_aa_context aa;
fz_irect clip; /* Specified clip rectangle */
fz_irect bbox; /* Measured bbox of path while stroking/filling */
};
/*
When rasterizing a shape, we first create a rasterizer then
run through the edges of the shape, feeding them in.
For a fill, this is easy as we just run along the path, feeding
edges as we go.
For a stroke, this is trickier, as we feed in edges from
alternate sides of the stroke as we proceed along it. It is only
when we reach the end of a subpath that we know whether we need
an initial cap, or whether the list of edges match up.
To identify whether a given edge fed in is forward or reverse,
we tag it with a 'rev' value.
Consider the following simplified example:
Consider a simple path A, B, C, D, close.
+------->-------+ The outside edge of this shape is the
| A B | forward edge. This is fed into the rasterizer
| +---<---+ | in order, with rev=0.
| | | |
^ v ^ v The inside edge of this shape is the reverse
| | | | edge. These edges are generated as we step
| +--->---+ | through the path in clockwise order, but
| D C | conceptually the path runs the other way.
+-------<-------+ These are fed into the rasterizer in clockwise
order, with rev=1.
Consider another path, this time an open one: A,B,C,D
+--->-------+ The outside edge of this shape is again the
* A B | forward edge. This is fed into the rasterizer
+---<---+ | in order, with rev=0.
| |
^ v The inside edge of this shape is the reverse
| | edge. These edges are generated as we step
+--->---+ | through the path in clockwise order, but
^ D C | conceptually the path runs the other way.
+---<-------+ These are fed into the rasterizer in clockwise
order, with rev=1.
At the end of the path, we realise that this is an open path, and we
therefore have to put caps on. The cap at 'D' is easy, because it's
a simple continuation of the rev=0 edge list that joins to the end
of the rev=1 edge list.
The cap at 'A' is trickier; it either needs to be (an) edge(s) prepended
to the rev=0 list or the rev=1 list. We signal this special case by
sending them with the special value rev=2.
The "edge" rasterizer ignores these values. The "edgebuffer" rasterizer
needs to use them to ensure that edges are correctly joined together
to allow for any part of a pixel operation.
*/
/*
fz_new_rasterizer: Create a new rasterizer instance.
This encapsulates a scan converter.
A single rasterizer instance can be used to scan convert many
things.
aa: The antialiasing settings to use (or NULL).
*/
fz_rasterizer *fz_new_rasterizer(fz_context *ctx, const fz_aa_context *aa);
/*
fz_drop_rasterizer: Dispose of a rasterizer once
finished with.
*/
static inline void fz_drop_rasterizer(fz_context *ctx, fz_rasterizer *r)
{
if (r)
r->fns.drop(ctx, r);
}
/*
fz_reset_rasterizer: Reset a rasterizer, ready to scan convert
a new shape.
clip: A pointer to a (device space) clipping rectangle.
Returns 1 if a indexing pass is required, or 0 if not.
After this, the edges should be 'inserted' into the rasterizer.
*/
int fz_reset_rasterizer(fz_context *ctx, fz_rasterizer *r, fz_irect clip);
/*
fz_insert_rasterizer: Insert an edge into a rasterizer.
x0, y0: Initial point
x1, y1: Final point
rev: 'reverse' value, 0, 1 or 2. See above.
*/
static inline void fz_insert_rasterizer(fz_context *ctx, fz_rasterizer *r, float x0, float y0, float x1, float y1, int rev)
{
r->fns.insert(ctx, r, x0, y0, x1, y1, rev);
}
/*
fz_insert_rasterizer: Insert a rectangle into a rasterizer.
x0, y0: One corner of the rectangle.
x1, y1: The opposite corner of the rectangle.
The rectangle inserted is conceptually:
(x0,y0)->(x1,y0)->(x1,y1)->(x0,y1)->(x0,y0).
This method is only used for axis aligned rectangles,
and enables rasterizers to perform special 'anti-dropout'
processing to ensure that horizontal artifacts aren't
lost.
*/
static inline void fz_insert_rasterizer_rect(fz_context *ctx, fz_rasterizer *r, float x0, float y0, float x1, float y1)
{
r->fns.rect(ctx, r, x0, y0, x1, y1);
}
/*
fz_gap_rasterizer: Called to indicate that there is a gap
in the lists of edges fed into the rasterizer (i.e. when
a path hits a move).
*/
static inline void fz_gap_rasterizer(fz_context *ctx, fz_rasterizer *r)
{
if (r->fns.gap)
r->fns.gap(ctx, r);
}
/*
fz_antidropout_rasterizer: Detect whether antidropout
behaviour is required with this rasterizer.
Returns 1 if required, 0 otherwise.
*/
static inline int fz_antidropout_rasterizer(fz_context *ctx, fz_rasterizer *r)
{
return r->fns.rect != NULL;
}
/*
fz_postindex_rasterizer: Called to signify the end of the
indexing phase.
After this has been called, the edges should be inserted
again.
*/
static inline void fz_postindex_rasterizer(fz_context *ctx, fz_rasterizer *r)
{
if (r->fns.postindex)
r->fns.postindex(ctx, r);
}
/*
fz_bound_rasterizer: Once a set of edges has been fed into a
rasterizer, the (device space) bounding box can be retrieved.
*/
fz_irect fz_bound_rasterizer(fz_context *ctx, const fz_rasterizer *rast);
/*
fz_scissor_rasterizer: Retrieve the clipping box with which the
rasterizer was reset.
*/
fz_rect fz_scissor_rasterizer(fz_context *ctx, const fz_rasterizer *rast);
/*
fz_convert_rasterizer: Convert the set of edges that have
been fed in, into pixels within the pixmap.
eofill: Fill rule; True for even odd, false for non zero.
pix: The pixmap to fill into.
colorbv: The color components corresponding to the pixmap.
eop: effective overprint.
*/
void fz_convert_rasterizer(fz_context *ctx, fz_rasterizer *r, int eofill, fz_pixmap *pix, unsigned char *colorbv, fz_overprint *eop);
/*
fz_is_rect_rasterizer: Detect if the edges fed into a
rasterizer make up a simple rectangle.
*/
static inline int fz_is_rect_rasterizer(fz_context *ctx, fz_rasterizer *r)
{
return r->fns.is_rect(ctx, r);
}
void *fz_new_rasterizer_of_size(fz_context *ctx, int size, const fz_rasterizer_fns *fns);
#define fz_new_derived_rasterizer(C,M,F) \
((M*)Memento_label(fz_new_rasterizer_of_size(C, sizeof(M), F), #M))
/*
fz_rasterizer_text_aa_level: Get the number of bits of
antialiasing we are using for text in a given rasterizer.
Between 0 and 8.
*/
int fz_rasterizer_text_aa_level(fz_rasterizer *ras);
/*
fz_set_rasterizer_text_aa_level: Set the number of bits of
antialiasing we should use for text in a given configuration.
bits: The number of bits of antialiasing to use (values are clamped
to within the 0 to 8 range).
*/
void fz_set_rasterizer_text_aa_level(fz_context *ctx, fz_aa_context *aa, int bits);
/*
fz_rasterizer_graphics_aa_level: Get the number of bits of
antialiasing we are using for graphics in a given rasterizer.
Between 0 and 8.
*/
int fz_rasterizer_graphics_aa_level(fz_rasterizer *ras);
/*
fz_set_rasterizer_graphics_aa_level: Set the number of bits of
antialiasing we should use for graphics in a given rasterizer.
bits: The number of bits of antialiasing to use (values are clamped
to within the 0 to 8 range).
*/
void fz_set_rasterizer_graphics_aa_level(fz_context *ctx, fz_aa_context *aa, int bits);
/*
fz_rasterizer_graphics_min_line_width: Get the minimum line
width to be used for stroked lines in a given rasterizer.
min_line_width: The minimum line width to use (in pixels).
*/
float fz_rasterizer_graphics_min_line_width(fz_rasterizer *ras);
/*
fz_set_rasterizer_graphics_min_line_width: Set the minimum line
width to be used for stroked lines in a given configuration.
min_line_width: The minimum line width to use (in pixels).
*/
void fz_set_rasterizer_graphics_min_line_width(fz_context *ctx, fz_aa_context *aa, float min_line_width);
fz_rasterizer *fz_new_gel(fz_context *ctx);
typedef enum
{
FZ_EDGEBUFFER_ANY_PART_OF_PIXEL,
FZ_EDGEBUFFER_CENTER_OF_PIXEL
} fz_edgebuffer_rule;
fz_rasterizer *fz_new_edgebuffer(fz_context *ctx, fz_edgebuffer_rule rule);
int fz_flatten_fill_path(fz_context *ctx, fz_rasterizer *rast, const fz_path *path, fz_matrix ctm, float flatness, const fz_irect *irect, fz_irect *bounds);
int fz_flatten_stroke_path(fz_context *ctx, fz_rasterizer *rast, const fz_path *path, const fz_stroke_state *stroke, fz_matrix ctm, float flatness, float linewidth, const fz_irect *irect, fz_irect *bounds);
fz_irect *fz_bound_path_accurate(fz_context *ctx, fz_irect *bbox, const fz_irect *scissor, const fz_path *path, const fz_stroke_state *stroke, fz_matrix ctm, float flatness, float linewidth);
typedef void (fz_solid_color_painter_t)(unsigned char * FZ_RESTRICT dp, int n, int w, const unsigned char * FZ_RESTRICT color, int da, const fz_overprint *eop);
typedef void (fz_span_painter_t)(unsigned char * FZ_RESTRICT dp, int da, const unsigned char * FZ_RESTRICT sp, int sa, int n, int w, int alpha, const fz_overprint *eop);
typedef void (fz_span_color_painter_t)(unsigned char * FZ_RESTRICT dp, const unsigned char * FZ_RESTRICT mp, int n, int w, const unsigned char * FZ_RESTRICT color, int da, const fz_overprint *eop);
fz_solid_color_painter_t *fz_get_solid_color_painter(int n, const unsigned char *color, int da, const fz_overprint *eop);
fz_span_painter_t *fz_get_span_painter(int da, int sa, int n, int alpha, const fz_overprint *eop);
fz_span_color_painter_t *fz_get_span_color_painter(int n, int da, const unsigned char *color, const fz_overprint *eop);
void fz_paint_image(fz_context *ctx, fz_pixmap *dst, const fz_irect *scissor, fz_pixmap *shape, fz_pixmap *group_alpha, fz_pixmap *img, fz_matrix ctm, int alpha, int lerp_allowed, int gridfit_as_tiled, const fz_overprint *eop);
void fz_paint_image_with_color(fz_context *ctx, fz_pixmap *dst, const fz_irect *scissor, fz_pixmap *shape, fz_pixmap *group_alpha, fz_pixmap *img, fz_matrix ctm, const unsigned char *colorbv, int lerp_allowed, int gridfit_as_tiled, const fz_overprint *eop);
void fz_paint_pixmap(fz_pixmap *dst, const fz_pixmap *src, int alpha);
void fz_paint_pixmap_alpha(fz_pixmap *dst, const fz_pixmap *src, int alpha);
void fz_paint_pixmap_with_mask(fz_pixmap *dst, const fz_pixmap *src, const fz_pixmap *msk);
void fz_paint_pixmap_with_bbox(fz_pixmap *dst, const fz_pixmap *src, int alpha, fz_irect bbox);
void fz_paint_pixmap_with_overprint(fz_pixmap *dst, const fz_pixmap *src, const fz_overprint *eop);
void fz_blend_pixmap(fz_context *ctx, fz_pixmap *dst, fz_pixmap *src, int alpha, int blendmode, int isolated, const fz_pixmap *shape);
void fz_blend_pixmap_knockout(fz_context *ctx, fz_pixmap *dst, fz_pixmap *src, const fz_pixmap *shape);
void fz_paint_glyph(const unsigned char *colorbv, fz_pixmap *dst, unsigned char *dp, const fz_glyph *glyph, int w, int h, int skip_x, int skip_y, const fz_overprint *eop);
#endif