eBookReaderSwitch/mupdf/source/fitz/draw-device.c

3283 lines
93 KiB
C
Raw Normal View History

#include "fitz-imp.h"
#include "draw-imp.h"
#include <string.h>
#include <assert.h>
#include <math.h>
#include <float.h>
#define STACK_SIZE 96
/* Enable the following to attempt to support knockout and/or isolated
* blending groups. */
#define ATTEMPT_KNOCKOUT_AND_ISOLATED
/* Enable the following to help debug group blending. */
#undef DUMP_GROUP_BLENDS
/* Enable the following to help debug graphics stack pushes/pops */
#undef DUMP_STACK_CHANGES
typedef struct fz_draw_device_s fz_draw_device;
enum {
FZ_DRAWDEV_FLAGS_TYPE3 = 1,
};
typedef struct fz_draw_state_s fz_draw_state;
struct fz_draw_state_s {
fz_irect scissor;
fz_pixmap *dest;
fz_pixmap *mask;
fz_pixmap *shape;
fz_pixmap *group_alpha;
int blendmode;
int id, encache;
float alpha;
fz_matrix ctm;
float xstep, ystep;
fz_irect area;
};
struct fz_draw_device_s
{
fz_device super;
fz_matrix transform;
fz_rasterizer *rast;
fz_default_colorspaces *default_cs;
fz_colorspace *proof_cs;
int flags;
int resolve_spots;
int top;
fz_scale_cache *cache_x;
fz_scale_cache *cache_y;
fz_draw_state *stack;
int stack_cap;
fz_draw_state init_stack[STACK_SIZE];
};
#ifdef DUMP_GROUP_BLENDS
#include <stdio.h>
static int group_dump_count = 0;
static void fz_dump_blend(fz_context *ctx, const char *s, fz_pixmap *pix)
{
char name[80];
int psd = 0;
if (!pix)
return;
if (pix->s || fz_colorspace_is_subtractive(ctx, pix->colorspace))
psd = 1;
fz_snprintf(name, sizeof(name), "dump%02d.%s", group_dump_count, psd ? "psd" : "png");
printf("%s%02d%s(%p)", s ? s : "", group_dump_count++, psd ? "(PSD)" : "", pix);
if (psd)
fz_save_pixmap_as_psd(ctx, pix, name);
else
fz_save_pixmap_as_png(ctx, pix, name);
}
static void dump_spaces(int x, const char *s)
{
int i;
for (i = 0; i < x; i++)
printf(" ");
printf("%s", s);
}
#endif
#ifdef DUMP_STACK_CHANGES
#define STACK_PUSHED(A) stack_change(ctx, dev, '>', A)
#define STACK_POPPED(A) stack_change(ctx, dev, '<', A)
#define STACK_CONVERT(A) stack_change(ctx, dev, '=', A)
static void stack_change(fz_context *ctx, fz_draw_device *dev, int c, const char *s)
{
int n, depth = dev->top;
if (c != '<')
depth--;
n = depth;
while (n-- > 0)
fputc('\t', stderr);
fprintf(stderr, "%c%s (%d)\n", c, s, depth);
}
#else
#define STACK_PUSHED(A) do {} while (0)
#define STACK_POPPED(A) do {} while (0)
#define STACK_CONVERT(A) do {} while (0)
#endif
/* Logic below assumes that default cs is set to color context cs if there
* was not a default in the document for that particular cs
*/
static fz_colorspace *fz_default_colorspace(fz_context *ctx, fz_default_colorspaces *default_cs, fz_colorspace *cs)
{
if (cs == NULL)
return NULL;
if (default_cs == NULL)
return cs;
switch (fz_colorspace_type(ctx, cs))
{
case FZ_COLORSPACE_GRAY:
if (cs == fz_device_gray(ctx))
return fz_default_gray(ctx, default_cs);
break;
case FZ_COLORSPACE_RGB:
if (cs == fz_device_rgb(ctx))
return fz_default_rgb(ctx, default_cs);
break;
case FZ_COLORSPACE_CMYK:
if (cs == fz_device_cmyk(ctx))
return fz_default_cmyk(ctx, default_cs);
break;
default:
break;
}
return cs;
}
static void grow_stack(fz_context *ctx, fz_draw_device *dev)
{
int max = dev->stack_cap * 2;
fz_draw_state *stack;
if (dev->stack == &dev->init_stack[0])
{
stack = fz_malloc_array(ctx, max, fz_draw_state);
memcpy(stack, dev->stack, sizeof(*stack) * dev->stack_cap);
}
else
{
stack = fz_realloc_array(ctx, dev->stack, max, fz_draw_state);
}
dev->stack = stack;
dev->stack_cap = max;
}
/* 'Push' the stack. Returns a pointer to the current state, with state[1]
* already having been initialised to contain the same thing. Simply
* change any contents of state[1] that you want to and continue. */
static fz_draw_state *push_stack(fz_context *ctx, fz_draw_device *dev, const char *message)
{
fz_draw_state *state;
if (dev->top == dev->stack_cap-1)
grow_stack(ctx, dev);
state = &dev->stack[dev->top];
dev->top++;
memcpy(&state[1], state, sizeof(*state));
STACK_PUSHED(message);
return state;
}
static fz_draw_state *pop_stack(fz_context *ctx, fz_draw_device *dev, const char *message)
{
fz_draw_state *state = &dev->stack[--dev->top];
STACK_POPPED(message);
return state;
}
static fz_draw_state *convert_stack(fz_context *ctx, fz_draw_device *dev, const char *message)
{
fz_draw_state *state = &dev->stack[dev->top-1];
STACK_CONVERT(message);
return state;
}
static fz_draw_state *
fz_knockout_begin(fz_context *ctx, fz_draw_device *dev)
{
fz_irect bbox, ga_bbox;
fz_draw_state *state = &dev->stack[dev->top];
int isolated = state->blendmode & FZ_BLEND_ISOLATED;
if ((state->blendmode & FZ_BLEND_KNOCKOUT) == 0)
return state;
state = push_stack(ctx, dev, "knockout");
bbox = fz_pixmap_bbox(ctx, state->dest);
bbox = fz_intersect_irect(bbox, state->scissor);
state[1].dest = fz_new_pixmap_with_bbox(ctx, state->dest->colorspace, bbox, state->dest->seps, state->dest->alpha);
if (state[0].group_alpha)
{
ga_bbox = fz_pixmap_bbox(ctx, state->group_alpha);
ga_bbox = fz_intersect_irect(ga_bbox, state->scissor);
state[1].group_alpha = fz_new_pixmap_with_bbox(ctx, state->group_alpha->colorspace, ga_bbox, state->group_alpha->seps, state->group_alpha->alpha);
}
if (isolated)
{
fz_clear_pixmap(ctx, state[1].dest);
if (state[1].group_alpha)
fz_clear_pixmap(ctx, state[1].group_alpha);
}
else
{
/* Find the last but one destination to copy */
int i = dev->top-1; /* i = the one on entry (i.e. the last one) */
fz_draw_state *prev = state;
while (i > 0)
{
prev = &dev->stack[--i];
if (prev->dest != state->dest)
break;
}
if (prev->dest)
{
fz_copy_pixmap_rect(ctx, state[1].dest, prev->dest, bbox, dev->default_cs);
if (state[1].group_alpha)
{
if (prev->group_alpha)
fz_copy_pixmap_rect(ctx, state[1].group_alpha, prev->group_alpha, ga_bbox, dev->default_cs);
else
fz_clear_pixmap(ctx, state[1].group_alpha);
}
}
else
{
fz_clear_pixmap(ctx, state[1].dest);
if (state[1].group_alpha)
fz_clear_pixmap(ctx, state[1].group_alpha);
}
}
/* Knockout groups (and only knockout groups) rely on shape */
state[1].shape = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, state[1].shape);
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top-1, "");
fz_dump_blend(ctx, "Knockout begin: background is ", state[1].dest);
if (state[1].shape)
fz_dump_blend(ctx, "/S=", state[1].shape);
if (state[1].group_alpha)
fz_dump_blend(ctx, "/GA=", state[1].group_alpha);
printf("\n");
#endif
state[1].scissor = bbox;
state[1].blendmode &= ~(FZ_BLEND_MODEMASK | FZ_BLEND_ISOLATED);
return &state[1];
}
static void fz_knockout_end(fz_context *ctx, fz_draw_device *dev)
{
fz_draw_state *state;
if (dev->top == 0)
fz_throw(ctx, FZ_ERROR_GENERIC, "unexpected knockout end");
state = pop_stack(ctx, dev, "knockout");
if ((state[0].blendmode & FZ_BLEND_KNOCKOUT) == 0)
return;
assert((state[1].blendmode & FZ_BLEND_ISOLATED) == 0);
assert((state[1].blendmode & FZ_BLEND_MODEMASK) == 0);
assert(state[1].shape);
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top, "");
fz_dump_blend(ctx, "Knockout end: blending ", state[1].dest);
if (state[1].shape)
fz_dump_blend(ctx, "/S=", state[1].shape);
if (state[1].group_alpha)
fz_dump_blend(ctx, "/GA=", state[1].group_alpha);
fz_dump_blend(ctx, " onto ", state[0].dest);
if (state[0].shape)
fz_dump_blend(ctx, "/S=", state[0].shape);
if (state[0].group_alpha)
fz_dump_blend(ctx, "/GA=", state[0].group_alpha);
if ((state->blendmode & FZ_BLEND_MODEMASK) != 0)
printf(" (blend %d)", state->blendmode & FZ_BLEND_MODEMASK);
if ((state->blendmode & FZ_BLEND_ISOLATED) != 0)
printf(" (isolated)");
printf(" (knockout)");
#endif
fz_blend_pixmap_knockout(ctx, state[0].dest, state[1].dest, state[1].shape);
fz_drop_pixmap(ctx, state[1].dest);
state[1].dest = NULL;
if (state[1].group_alpha && state[0].group_alpha != state[1].group_alpha)
{
if (state[0].group_alpha)
fz_blend_pixmap_knockout(ctx, state[0].group_alpha, state[1].group_alpha, state[1].shape);
fz_drop_pixmap(ctx, state[1].group_alpha);
state[1].group_alpha = NULL;
}
if (state[0].shape != state[1].shape)
{
if (state[0].shape)
fz_paint_pixmap(state[0].shape, state[1].shape, 255);
fz_drop_pixmap(ctx, state[1].shape);
state[1].shape = NULL;
}
#ifdef DUMP_GROUP_BLENDS
fz_dump_blend(ctx, " to get ", state[0].dest);
if (state[0].shape)
fz_dump_blend(ctx, "/S=", state[0].shape);
if (state[0].group_alpha)
fz_dump_blend(ctx, "/GA=", state[0].group_alpha);
printf("\n");
#endif
}
static int
colors_supported(fz_context *ctx, fz_colorspace *cs, fz_pixmap *dest)
{
/* Even if we support separations in the destination, if the color space has CMY or K as one of
* its colorants and we are in RGB or Gray we will want to do the tint transform */
if (!fz_colorspace_is_subtractive(ctx, dest->colorspace) && fz_colorspace_device_n_has_cmyk(ctx, cs))
return 0;
/* If we have separations then we should support it */
if (dest->seps)
return 1;
/* If our destination is CMYK and the source color space is only C, M, Y or K we support it
* even if we have no seps */
if (fz_colorspace_is_subtractive(ctx, dest->colorspace))
{
int i, n;
if (fz_colorspace_device_n_has_only_cmyk(ctx, cs))
return 1;
n = fz_colorspace_n(ctx, cs);
for (i = 0; i < n; i++)
{
const char *name = fz_colorspace_colorant(ctx, cs, i);
if (!name)
return 0;
if (!strcmp(name, "All"))
continue;
if (!strcmp(name, "Cyan"))
continue;
if (!strcmp(name, "Magenta"))
continue;
if (!strcmp(name, "Yellow"))
continue;
if (!strcmp(name, "Black"))
continue;
if (!strcmp(name, "None"))
continue;
return 0;
}
return 1;
}
return 0;
}
static fz_overprint *
set_op_from_spaces(fz_context *ctx, fz_overprint *op, const fz_pixmap *dest, fz_colorspace *src, int opm)
{
int dn, sn, i, j, dc;
if (!op)
return NULL;
if (!fz_colorspace_is_subtractive(ctx, src) || !fz_colorspace_is_subtractive(ctx, dest->colorspace))
return NULL;
sn = fz_colorspace_n(ctx, src);
dn = dest->n - dest->alpha;
dc = dn - dest->s;
/* If a source colorant is not mentioned in the destination
* colorants (either process or spots), then it will be mapped
* to process colorants. In this case, the process colorants
* can never be protected.
*/
for (j = 0; j < sn; j++)
{
/* Run through the colorants looking for one that isn't mentioned.
* i.e. continue if we we find one, break if not. */
const char *sname = fz_colorspace_colorant(ctx, src, j);
if (!sname)
break;
if (!strcmp(sname, "All") || !strcmp(sname, "None"))
continue;
for (i = 0; i < dc; i++)
{
const char *name = fz_colorspace_colorant(ctx, dest->colorspace, i);
if (!name)
continue;
if (!strcmp(name, sname))
break;
}
if (i != dc)
continue;
for (; i < dn; i++)
{
const char *name = fz_separation_name(ctx, dest->seps, i - dc);
if (!name)
continue;
if (!strcmp(name, sname))
break;
}
if (i == dn)
{
/* This source colorant wasn't mentioned */
break;
}
}
if (j == sn)
{
/* We did not find any source colorants that weren't mentioned, so
* process colorants might not be touched... */
for (i = 0; i < dc; i++)
{
const char *name = fz_colorspace_colorant(ctx, dest->colorspace, i);
for (j = 0; j < sn; j++)
{
const char *sname = fz_colorspace_colorant(ctx, src, j);
if (!name || !sname)
continue;
if (!strcmp(name, sname))
break;
if (!strcmp(sname, "All"))
break;
}
if (j == sn)
fz_set_overprint(op, i);
}
}
for (i = dc; i < dn; i++)
{
const char *name = fz_separation_name(ctx, dest->seps, i - dc);
for (j = 0; j < sn; j++)
{
const char *sname = fz_colorspace_colorant(ctx, src, j);
if (!name || !sname)
continue;
if (!strcmp(name, sname))
break;
if (!strcmp(sname, "All"))
break;
}
if (j == sn)
fz_set_overprint(op, i);
}
return op;
}
static fz_overprint *
resolve_color(fz_context *ctx,
fz_overprint *op,
const float *color,
fz_colorspace *colorspace,
float alpha,
fz_color_params color_params,
unsigned char *colorbv,
fz_pixmap *dest)
{
float colorfv[FZ_MAX_COLORS];
int i;
int n = dest->n - dest->alpha;
fz_colorspace *model = dest->colorspace;
int devn, devgray;
int effective_opm;
if (colorspace == NULL && model != NULL)
fz_throw(ctx, FZ_ERROR_GENERIC, "color destination requires source color");
effective_opm = color_params.opm;
devn = fz_colorspace_is_device_n(ctx, colorspace);
devgray = fz_colorspace_is_device_gray(ctx, colorspace);
/* We can only overprint when enabled, and when we are in a subtractive colorspace */
if (color_params.op == 0 || !fz_colorspace_is_subtractive(ctx, dest->colorspace))
op = NULL;
/* Device Gray is additive, but seems to still be counted for overprint
* (see Ghent_V3.0/030_Gray_K_black_OP_x1a.pdf 030.pdf). */
else if (devgray)
{
}
/* If we are in a CMYK space (i.e. not a devn one, given we know we are subtractive at this point),
* then we only adhere to overprint mode if it's the same space as the destination. */
/* FIXME: Possibly we need a better equivalency test here. */
else if (!devn && colorspace != dest->colorspace)
{
effective_opm = 0;
}
if (n == 0)
i = 0;
else if (devn && colors_supported(ctx, colorspace, dest))
{
fz_convert_separation_colors(ctx, colorspace, color, dest->seps, dest->colorspace, colorfv, color_params);
for (i = 0; i < n; i++)
colorbv[i] = colorfv[i] * 255;
op = set_op_from_spaces(ctx, op, dest, colorspace, effective_opm);
}
else
{
int c = n - dest->s;
fz_convert_color(ctx, colorspace, color, dest->colorspace, colorfv, NULL, color_params);
for (i = 0; i < c; i++)
colorbv[i] = colorfv[i] * 255;
for (; i < n; i++)
{
colorfv[i] = 0;
colorbv[i] = 0;
}
}
colorbv[i] = alpha * 255;
/* op && !devn => overprinting in cmyk or devicegray. */
if (op && !devn)
{
/* We are overprinting, so protect all spots. */
for (i = 4; i < n; i++)
fz_set_overprint(op, i);
/* If OPM, then protect all components for which the color values are zero.
* (but only if we're in devicecmyk). */
if (effective_opm == 1 && colorspace != fz_device_gray(ctx))
for (i = 0; i < n; i++)
if (colorfv[i] == 0)
fz_set_overprint(op, i);
}
return op;
}
static fz_draw_state *
push_group_for_separations(fz_context *ctx, fz_draw_device *dev, fz_color_params color_params, fz_default_colorspaces *default_cs)
{
fz_separations *clone = fz_clone_separations_for_overprint(ctx, dev->stack[0].dest->seps);
fz_colorspace *oi = fz_default_output_intent(ctx, default_cs);
fz_colorspace *dcs = fz_device_cmyk(ctx);
/* Pick sep target CMYK based upon proof and output intent settings. Priority
* is oi, proof, devicecmyk. */
if (dev->proof_cs)
{
dcs = dev->proof_cs;
}
if (oi)
{
dcs = oi;
}
/* Not needed if dest has the seps, and we are not using a proof or the target is the same as the proof and we don't have an oi or the target is the same as the oi */
if ((clone == dev->stack[0].dest->seps) && (dev->proof_cs == NULL || dev->proof_cs == dev->stack[0].dest->colorspace) && (oi == NULL || oi == dev->stack[0].dest->colorspace))
{
fz_drop_separations(ctx, clone);
dev->resolve_spots = 0;
return &dev->stack[0];
}
/* Make a new pixmap to render to. */
fz_try(ctx)
{
push_stack(ctx, dev, "separations");
dev->stack[1].dest = fz_clone_pixmap_area_with_different_seps(ctx, dev->stack[0].dest, &dev->stack[0].scissor, dcs, clone, color_params, default_cs);
}
fz_always(ctx)
fz_drop_separations(ctx, clone);
fz_catch(ctx)
fz_rethrow(ctx);
return &dev->stack[1];
}
static void
fz_draw_fill_path(fz_context *ctx, fz_device *devp, const fz_path *path, int even_odd, fz_matrix in_ctm,
fz_colorspace *colorspace_in, const float *color, float alpha, fz_color_params color_params)
{
fz_draw_device *dev = (fz_draw_device*)devp;
fz_matrix ctm = fz_concat(in_ctm, dev->transform);
fz_rasterizer *rast = dev->rast;
fz_colorspace *colorspace = fz_default_colorspace(ctx, dev->default_cs, colorspace_in);
float expansion = fz_matrix_expansion(ctm);
float flatness;
unsigned char colorbv[FZ_MAX_COLORS + 1];
fz_irect bbox;
fz_draw_state *state = &dev->stack[dev->top];
fz_overprint op = { { 0 } };
fz_overprint *eop;
if (dev->top == 0 && dev->resolve_spots)
state = push_group_for_separations(ctx, dev, color_params, dev->default_cs);
if (expansion < FLT_EPSILON)
expansion = 1;
flatness = 0.3f / expansion;
if (flatness < 0.001f)
flatness = 0.001f;
bbox = fz_intersect_irect(fz_pixmap_bbox(ctx, state->dest), state->scissor);
if (fz_flatten_fill_path(ctx, rast, path, ctm, flatness, &bbox, &bbox))
return;
if (state->blendmode & FZ_BLEND_KNOCKOUT)
state = fz_knockout_begin(ctx, dev);
eop = resolve_color(ctx, &op, color, colorspace, alpha, color_params, colorbv, state->dest);
fz_convert_rasterizer(ctx, rast, even_odd, state->dest, colorbv, eop);
if (state->shape)
{
if (!rast->fns.reusable)
fz_flatten_fill_path(ctx, rast, path, ctm, flatness, &bbox, NULL);
colorbv[0] = 255;
fz_convert_rasterizer(ctx, rast, even_odd, state->shape, colorbv, 0);
}
if (state->group_alpha)
{
if (!rast->fns.reusable)
fz_flatten_fill_path(ctx, rast, path, ctm, flatness, &bbox, NULL);
colorbv[0] = alpha * 255;
fz_convert_rasterizer(ctx, rast, even_odd, state->group_alpha, colorbv, 0);
}
if (state->blendmode & FZ_BLEND_KNOCKOUT)
fz_knockout_end(ctx, dev);
}
static void
fz_draw_stroke_path(fz_context *ctx, fz_device *devp, const fz_path *path, const fz_stroke_state *stroke, fz_matrix in_ctm,
fz_colorspace *colorspace_in, const float *color, float alpha, fz_color_params color_params)
{
fz_draw_device *dev = (fz_draw_device*)devp;
fz_matrix ctm = fz_concat(in_ctm, dev->transform);
fz_rasterizer *rast = dev->rast;
fz_colorspace *colorspace = fz_default_colorspace(ctx, dev->default_cs, colorspace_in);
float expansion = fz_matrix_expansion(ctm);
float flatness;
float linewidth = stroke->linewidth;
unsigned char colorbv[FZ_MAX_COLORS + 1];
fz_irect bbox;
float aa_level = 2.0f/(fz_rasterizer_graphics_aa_level(rast)+2);
fz_draw_state *state = &dev->stack[dev->top];
float mlw = fz_rasterizer_graphics_min_line_width(rast);
fz_overprint op = { { 0 } };
fz_overprint *eop;
if (dev->top == 0 && dev->resolve_spots)
state = push_group_for_separations(ctx, dev, color_params, dev->default_cs);
if (mlw > aa_level)
aa_level = mlw;
if (expansion < FLT_EPSILON)
expansion = 1;
if (linewidth * expansion < aa_level)
linewidth = aa_level / expansion;
flatness = 0.3f / expansion;
if (flatness < 0.001f)
flatness = 0.001f;
bbox = fz_intersect_irect(fz_pixmap_bbox_no_ctx(state->dest), state->scissor);
if (fz_flatten_stroke_path(ctx, rast, path, stroke, ctm, flatness, linewidth, &bbox, &bbox))
return;
if (state->blendmode & FZ_BLEND_KNOCKOUT)
state = fz_knockout_begin(ctx, dev);
eop = resolve_color(ctx, &op, color, colorspace, alpha, color_params, colorbv, state->dest);
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top, "");
fz_dump_blend(ctx, "Before stroke ", state->dest);
if (state->shape)
fz_dump_blend(ctx, "/S=", state->shape);
if (state->group_alpha)
fz_dump_blend(ctx, "/GA=", state->group_alpha);
printf("\n");
#endif
fz_convert_rasterizer(ctx, rast, 0, state->dest, colorbv, eop);
if (state->shape)
{
if (!rast->fns.reusable)
(void)fz_flatten_stroke_path(ctx, rast, path, stroke, ctm, flatness, linewidth, &bbox, NULL);
colorbv[0] = 255;
fz_convert_rasterizer(ctx, rast, 0, state->shape, colorbv, 0);
}
if (state->group_alpha)
{
if (!rast->fns.reusable)
(void)fz_flatten_stroke_path(ctx, rast, path, stroke, ctm, flatness, linewidth, &bbox, NULL);
colorbv[0] = 255 * alpha;
fz_convert_rasterizer(ctx, rast, 0, state->group_alpha, colorbv, 0);
}
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top, "");
fz_dump_blend(ctx, "After stroke ", state->dest);
if (state->shape)
fz_dump_blend(ctx, "/S=", state->shape);
if (state->group_alpha)
fz_dump_blend(ctx, "/GA=", state->group_alpha);
printf("\n");
#endif
if (state->blendmode & FZ_BLEND_KNOCKOUT)
fz_knockout_end(ctx, dev);
}
static void
fz_draw_clip_path(fz_context *ctx, fz_device *devp, const fz_path *path, int even_odd, fz_matrix in_ctm, fz_rect scissor)
{
fz_draw_device *dev = (fz_draw_device*)devp;
fz_matrix ctm = fz_concat(in_ctm, dev->transform);
fz_rasterizer *rast = dev->rast;
float expansion = fz_matrix_expansion(ctm);
float flatness;
fz_irect bbox;
fz_draw_state *state = &dev->stack[dev->top];
fz_colorspace *model;
if (dev->top == 0 && dev->resolve_spots)
state = push_group_for_separations(ctx, dev, fz_default_color_params /* FIXME */, dev->default_cs);
if (expansion < FLT_EPSILON)
expansion = 1;
flatness = 0.3f / expansion;
if (flatness < 0.001f)
flatness = 0.001f;
state = push_stack(ctx, dev, "clip path");
model = state->dest->colorspace;
if (!fz_is_infinite_rect(scissor))
{
bbox = fz_irect_from_rect(fz_transform_rect(scissor, dev->transform));
bbox = fz_intersect_irect(bbox, fz_pixmap_bbox(ctx, state->dest));
bbox = fz_intersect_irect(bbox, state->scissor);
}
else
{
bbox = fz_intersect_irect(fz_pixmap_bbox(ctx, state->dest), state->scissor);
}
if (fz_flatten_fill_path(ctx, rast, path, ctm, flatness, &bbox, &bbox) || fz_is_rect_rasterizer(ctx, rast))
{
state[1].scissor = bbox;
state[1].mask = NULL;
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top-1, "Clip (rectangular) begin\n");
#endif
return;
}
state[1].mask = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, state[1].mask);
state[1].dest = fz_new_pixmap_with_bbox(ctx, model, bbox, state[0].dest->seps, state[0].dest->alpha);
fz_copy_pixmap_rect(ctx, state[1].dest, state[0].dest, bbox, dev->default_cs);
if (state[1].shape)
{
state[1].shape = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, state[1].shape);
}
if (state[1].group_alpha)
{
state[1].group_alpha = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, state[1].group_alpha);
}
fz_convert_rasterizer(ctx, rast, even_odd, state[1].mask, NULL, 0);
state[1].scissor = bbox;
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top-1, "Clip (non-rectangular) begin\n");
#endif
}
static void
fz_draw_clip_stroke_path(fz_context *ctx, fz_device *devp, const fz_path *path, const fz_stroke_state *stroke, fz_matrix in_ctm, fz_rect scissor)
{
fz_draw_device *dev = (fz_draw_device*)devp;
fz_matrix ctm = fz_concat(in_ctm, dev->transform);
fz_rasterizer *rast = dev->rast;
float expansion = fz_matrix_expansion(ctm);
float flatness;
float linewidth = stroke->linewidth;
fz_irect bbox;
fz_draw_state *state = &dev->stack[dev->top];
fz_colorspace *model;
float aa_level = 2.0f/(fz_rasterizer_graphics_aa_level(rast)+2);
float mlw = fz_rasterizer_graphics_min_line_width(rast);
if (dev->top == 0 && dev->resolve_spots)
state = push_group_for_separations(ctx, dev, fz_default_color_params /* FIXME */, dev->default_cs);
if (mlw > aa_level)
aa_level = mlw;
if (expansion < FLT_EPSILON)
expansion = 1;
if (linewidth * expansion < aa_level)
linewidth = aa_level / expansion;
flatness = 0.3f / expansion;
if (flatness < 0.001f)
flatness = 0.001f;
state = push_stack(ctx, dev, "clip stroke");
model = state->dest->colorspace;
if (!fz_is_infinite_rect(scissor))
{
bbox = fz_irect_from_rect(fz_transform_rect(scissor, dev->transform));
bbox = fz_intersect_irect(bbox, fz_pixmap_bbox(ctx, state->dest));
bbox = fz_intersect_irect(bbox, state->scissor);
}
else
{
bbox = fz_intersect_irect(fz_pixmap_bbox(ctx, state->dest), state->scissor);
}
if (fz_flatten_stroke_path(ctx, rast, path, stroke, ctm, flatness, linewidth, &bbox, &bbox))
{
state[1].scissor = bbox;
state[1].mask = NULL;
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top-1, "Clip (stroke, empty) begin\n");
#endif
return;
}
state[1].mask = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, state[1].mask);
/* When there is no alpha in the current destination (state[0].dest->alpha == 0)
* we have a choice. We can either create the new destination WITH alpha, or
* we can copy the old pixmap contents in. We opt for the latter here, but
* may want to revisit this decision in the future. */
state[1].dest = fz_new_pixmap_with_bbox(ctx, model, bbox, state[0].dest->seps, state[0].dest->alpha);
if (state[0].dest->alpha)
fz_clear_pixmap(ctx, state[1].dest);
else
fz_copy_pixmap_rect(ctx, state[1].dest, state[0].dest, bbox, dev->default_cs);
if (state->shape)
{
state[1].shape = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, state[1].shape);
}
if (state->group_alpha)
{
state[1].group_alpha = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, state[1].group_alpha);
}
fz_convert_rasterizer(ctx, rast, 0, state[1].mask, NULL, 0);
state[1].blendmode |= FZ_BLEND_ISOLATED;
state[1].scissor = bbox;
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top-1, "Clip (stroke) begin\n");
#endif
}
static void
draw_glyph(unsigned char *colorbv, fz_pixmap *dst, fz_glyph *glyph,
int xorig, int yorig, const fz_irect *scissor, fz_overprint *eop)
{
unsigned char *dp;
fz_irect bbox;
int x, y, w, h;
int skip_x, skip_y;
fz_pixmap *msk;
bbox = fz_glyph_bbox_no_ctx(glyph);
bbox = fz_translate_irect(bbox, xorig, yorig);
bbox = fz_intersect_irect(bbox, *scissor); /* scissor < dst */
bbox = fz_intersect_irect(bbox, fz_pixmap_bbox_no_ctx(dst));
if (fz_is_empty_irect(bbox))
return;
x = bbox.x0;
y = bbox.y0;
w = bbox.x1 - bbox.x0;
h = bbox.y1 - bbox.y0;
skip_x = x - glyph->x - xorig;
skip_y = y - glyph->y - yorig;
msk = glyph->pixmap;
dp = dst->samples + (unsigned int)((y - dst->y) * dst->stride + (x - dst->x) * dst->n);
if (msk == NULL)
{
fz_paint_glyph(colorbv, dst, dp, glyph, w, h, skip_x, skip_y, eop);
}
else
{
unsigned char *mp = msk->samples + skip_y * msk->stride + skip_x;
int da = dst->alpha;
if (dst->colorspace)
{
fz_span_color_painter_t *fn;
fn = fz_get_span_color_painter(dst->n, da, colorbv, eop);
assert(fn);
if (fn == NULL)
return;
while (h--)
{
(*fn)(dp, mp, dst->n, w, colorbv, da, eop);
dp += dst->stride;
mp += msk->stride;
}
}
else
{
fz_span_painter_t *fn;
fn = fz_get_span_painter(da, 1, 0, 255, eop);
assert(fn);
if (fn == NULL)
return;
while (h--)
{
(*fn)(dp, da, mp, 1, 0, w, 255, eop);
dp += dst->stride;
mp += msk->stride;
}
}
}
}
static void
fz_draw_fill_text(fz_context *ctx, fz_device *devp, const fz_text *text, fz_matrix in_ctm,
fz_colorspace *colorspace_in, const float *color, float alpha, fz_color_params color_params)
{
fz_draw_device *dev = (fz_draw_device*)devp;
fz_matrix ctm = fz_concat(in_ctm, dev->transform);
fz_draw_state *state = &dev->stack[dev->top];
fz_colorspace *model = state->dest->colorspace;
unsigned char colorbv[FZ_MAX_COLORS + 1];
unsigned char shapebv, shapebva;
fz_text_span *span;
int i;
fz_colorspace *colorspace = NULL;
fz_rasterizer *rast = dev->rast;
fz_overprint op = { { 0 } };
fz_overprint *eop;
if (dev->top == 0 && dev->resolve_spots)
state = push_group_for_separations(ctx, dev, color_params, dev->default_cs);
if (colorspace_in)
colorspace = fz_default_colorspace(ctx, dev->default_cs, colorspace_in);
if (colorspace == NULL && model != NULL)
fz_throw(ctx, FZ_ERROR_GENERIC, "color destination requires source color");
if (state->blendmode & FZ_BLEND_KNOCKOUT)
state = fz_knockout_begin(ctx, dev);
eop = resolve_color(ctx, &op, color, colorspace, alpha, color_params, colorbv, state->dest);
shapebv = 255;
shapebva = 255 * alpha;
for (span = text->head; span; span = span->next)
{
fz_matrix tm, trm;
fz_glyph *glyph;
int gid;
tm = span->trm;
for (i = 0; i < span->len; i++)
{
gid = span->items[i].gid;
if (gid < 0)
continue;
tm.e = span->items[i].x;
tm.f = span->items[i].y;
trm = fz_concat(tm, ctm);
glyph = fz_render_glyph(ctx, span->font, gid, &trm, model, &state->scissor, state->dest->alpha, fz_rasterizer_text_aa_level(rast));
if (glyph)
{
fz_pixmap *pixmap = glyph->pixmap;
int x = floorf(trm.e);
int y = floorf(trm.f);
if (pixmap == NULL || pixmap->n == 1)
{
draw_glyph(colorbv, state->dest, glyph, x, y, &state->scissor, eop);
if (state->shape)
draw_glyph(&shapebv, state->shape, glyph, x, y, &state->scissor, 0);
if (state->group_alpha)
draw_glyph(&shapebva, state->group_alpha, glyph, x, y, &state->scissor, 0);
}
else
{
fz_matrix mat;
mat.a = pixmap->w; mat.b = mat.c = 0; mat.d = pixmap->h;
mat.e = x + pixmap->x; mat.f = y + pixmap->y;
fz_paint_image(ctx, state->dest, &state->scissor, state->shape, state->group_alpha, pixmap, mat, alpha * 255, !(devp->hints & FZ_DONT_INTERPOLATE_IMAGES), devp->flags & FZ_DEVFLAG_GRIDFIT_AS_TILED, eop);
}
fz_drop_glyph(ctx, glyph);
}
else
{
fz_path *path = fz_outline_glyph(ctx, span->font, gid, tm);
if (path)
{
fz_draw_fill_path(ctx, devp, path, 0, in_ctm, colorspace, color, alpha, color_params);
fz_drop_path(ctx, path);
}
else
{
fz_warn(ctx, "cannot render glyph");
}
}
}
}
if (state->blendmode & FZ_BLEND_KNOCKOUT)
fz_knockout_end(ctx, dev);
}
static void
fz_draw_stroke_text(fz_context *ctx, fz_device *devp, const fz_text *text, const fz_stroke_state *stroke,
fz_matrix in_ctm, fz_colorspace *colorspace_in, const float *color, float alpha, fz_color_params color_params)
{
fz_draw_device *dev = (fz_draw_device*)devp;
fz_matrix ctm = fz_concat(in_ctm, dev->transform);
fz_draw_state *state = &dev->stack[dev->top];
unsigned char colorbv[FZ_MAX_COLORS + 1];
unsigned char solid = 255;
unsigned char alpha_byte = alpha * 255;
fz_text_span *span;
int i;
fz_colorspace *colorspace = NULL;
int aa = fz_rasterizer_text_aa_level(dev->rast);
fz_overprint op = { { 0 } };
fz_overprint *eop;
if (dev->top == 0 && dev->resolve_spots)
state = push_group_for_separations(ctx, dev, color_params, dev->default_cs);
if (colorspace_in)
colorspace = fz_default_colorspace(ctx, dev->default_cs, colorspace_in);
if (state->blendmode & FZ_BLEND_KNOCKOUT)
state = fz_knockout_begin(ctx, dev);
eop = resolve_color(ctx, &op, color, colorspace, alpha, color_params, colorbv, state->dest);
for (span = text->head; span; span = span->next)
{
fz_matrix tm, trm;
fz_glyph *glyph;
int gid;
tm = span->trm;
for (i = 0; i < span->len; i++)
{
gid = span->items[i].gid;
if (gid < 0)
continue;
tm.e = span->items[i].x;
tm.f = span->items[i].y;
trm = fz_concat(tm, ctm);
glyph = fz_render_stroked_glyph(ctx, span->font, gid, &trm, ctm, stroke, &state->scissor, aa);
if (glyph)
{
int x = (int)trm.e;
int y = (int)trm.f;
draw_glyph(colorbv, state->dest, glyph, x, y, &state->scissor, eop);
if (state->shape)
draw_glyph(&solid, state->shape, glyph, x, y, &state->scissor, 0);
if (state->group_alpha)
draw_glyph(&alpha_byte, state->group_alpha, glyph, x, y, &state->scissor, 0);
fz_drop_glyph(ctx, glyph);
}
else
{
fz_path *path = fz_outline_glyph(ctx, span->font, gid, tm);
if (path)
{
fz_draw_stroke_path(ctx, devp, path, stroke, in_ctm, colorspace, color, alpha, color_params);
fz_drop_path(ctx, path);
}
else
{
fz_warn(ctx, "cannot render glyph");
}
}
}
}
if (state->blendmode & FZ_BLEND_KNOCKOUT)
fz_knockout_end(ctx, dev);
}
static void
fz_draw_clip_text(fz_context *ctx, fz_device *devp, const fz_text *text, fz_matrix in_ctm, fz_rect scissor)
{
fz_draw_device *dev = (fz_draw_device*)devp;
fz_matrix ctm = fz_concat(in_ctm, dev->transform);
fz_irect bbox;
fz_matrix tm, trm;
fz_glyph *glyph;
int i, gid;
fz_draw_state *state;
fz_colorspace *model;
fz_text_span *span;
fz_rasterizer *rast = dev->rast;
if (dev->top == 0 && dev->resolve_spots)
state = push_group_for_separations(ctx, dev, fz_default_color_params /* FIXME */, dev->default_cs);
state = push_stack(ctx, dev, "clip text");
model = state->dest->colorspace;
/* make the mask the exact size needed */
bbox = fz_irect_from_rect(fz_bound_text(ctx, text, NULL, ctm));
bbox = fz_intersect_irect(bbox, state->scissor);
if (!fz_is_infinite_rect(scissor))
{
fz_rect tscissor = fz_transform_rect(scissor, dev->transform);
bbox = fz_intersect_irect(bbox, fz_irect_from_rect(tscissor));
}
state[1].mask = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, state[1].mask);
/* When there is no alpha in the current destination (state[0].dest->alpha == 0)
* we have a choice. We can either create the new destination WITH alpha, or
* we can copy the old pixmap contents in. We opt for the latter here, but
* may want to revisit this decision in the future. */
state[1].dest = fz_new_pixmap_with_bbox(ctx, model, bbox, state[0].dest->seps, state[0].dest->alpha);
if (state[0].dest->alpha)
fz_clear_pixmap(ctx, state[1].dest);
else
fz_copy_pixmap_rect(ctx, state[1].dest, state[0].dest, bbox, dev->default_cs);
if (state->shape)
{
state[1].shape = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, state[1].shape);
}
else
state[1].shape = NULL;
if (state->group_alpha)
{
state[1].group_alpha = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, state[1].group_alpha);
}
else
state[1].group_alpha = NULL;
state[1].blendmode |= FZ_BLEND_ISOLATED;
state[1].scissor = bbox;
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top-1, "Clip (text) begin\n");
#endif
if (!fz_is_empty_irect(bbox) && state[1].mask)
{
for (span = text->head; span; span = span->next)
{
tm = span->trm;
for (i = 0; i < span->len; i++)
{
gid = span->items[i].gid;
if (gid < 0)
continue;
tm.e = span->items[i].x;
tm.f = span->items[i].y;
trm = fz_concat(tm, ctm);
glyph = fz_render_glyph(ctx, span->font, gid, &trm, model, &state->scissor, state[1].dest->alpha, fz_rasterizer_text_aa_level(rast));
if (glyph)
{
int x = (int)trm.e;
int y = (int)trm.f;
draw_glyph(NULL, state[1].mask, glyph, x, y, &bbox, 0);
if (state[1].shape)
draw_glyph(NULL, state[1].shape, glyph, x, y, &bbox, 0);
if (state[1].group_alpha)
draw_glyph(NULL, state[1].group_alpha, glyph, x, y, &bbox, 0);
fz_drop_glyph(ctx, glyph);
}
else
{
fz_path *path = fz_outline_glyph(ctx, span->font, gid, tm);
if (path)
{
fz_pixmap *old_dest;
float white = 1;
old_dest = state[1].dest;
state[1].dest = state[1].mask;
state[1].mask = NULL;
fz_try(ctx)
{
fz_draw_fill_path(ctx, devp, path, 0, in_ctm, fz_device_gray(ctx), &white, 1, fz_default_color_params);
}
fz_always(ctx)
{
state[1].mask = state[1].dest;
state[1].dest = old_dest;
fz_drop_path(ctx, path);
}
fz_catch(ctx)
{
fz_rethrow(ctx);
}
}
else
{
fz_warn(ctx, "cannot render glyph for clipping");
}
}
}
}
}
}
static void
fz_draw_clip_stroke_text(fz_context *ctx, fz_device *devp, const fz_text *text, const fz_stroke_state *stroke, fz_matrix in_ctm, fz_rect scissor)
{
fz_draw_device *dev = (fz_draw_device*)devp;
fz_matrix ctm = fz_concat(in_ctm, dev->transform);
fz_irect bbox;
fz_pixmap *mask, *dest, *shape, *group_alpha;
fz_matrix tm, trm;
fz_glyph *glyph;
int i, gid;
fz_draw_state *state = push_stack(ctx, dev, "clip stroke text");
fz_colorspace *model = state->dest->colorspace;
fz_text_span *span;
int aa = fz_rasterizer_text_aa_level(dev->rast);
if (dev->top == 0 && dev->resolve_spots)
state = push_group_for_separations(ctx, dev, fz_default_color_params /* FIXME */, dev->default_cs);
/* make the mask the exact size needed */
bbox = fz_irect_from_rect(fz_bound_text(ctx, text, stroke, ctm));
bbox = fz_intersect_irect(bbox, state->scissor);
if (!fz_is_infinite_rect(scissor))
{
fz_rect tscissor = fz_transform_rect(scissor, dev->transform);
bbox = fz_intersect_irect(bbox, fz_irect_from_rect(tscissor));
}
state[1].mask = mask = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, mask);
/* When there is no alpha in the current destination (state[0].dest->alpha == 0)
* we have a choice. We can either create the new destination WITH alpha, or
* we can copy the old pixmap contents in. We opt for the latter here, but
* may want to revisit this decision in the future. */
state[1].dest = dest = fz_new_pixmap_with_bbox(ctx, model, bbox, state[0].dest->seps, state[0].dest->alpha);
if (state[0].dest->alpha)
fz_clear_pixmap(ctx, state[1].dest);
else
fz_copy_pixmap_rect(ctx, state[1].dest, state[0].dest, bbox, dev->default_cs);
if (state->shape)
{
state[1].shape = shape = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, shape);
}
else
shape = state->shape;
if (state->group_alpha)
{
state[1].group_alpha = group_alpha = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, group_alpha);
}
else
group_alpha = NULL;
state[1].blendmode |= FZ_BLEND_ISOLATED;
state[1].scissor = bbox;
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top-1, "Clip (stroke text) begin\n");
#endif
if (!fz_is_empty_irect(bbox))
{
for (span = text->head; span; span = span->next)
{
tm = span->trm;
for (i = 0; i < span->len; i++)
{
gid = span->items[i].gid;
if (gid < 0)
continue;
tm.e = span->items[i].x;
tm.f = span->items[i].y;
trm = fz_concat(tm, ctm);
glyph = fz_render_stroked_glyph(ctx, span->font, gid, &trm, ctm, stroke, &state->scissor, aa);
if (glyph)
{
int x = (int)trm.e;
int y = (int)trm.f;
draw_glyph(NULL, mask, glyph, x, y, &bbox, 0);
if (shape)
draw_glyph(NULL, shape, glyph, x, y, &bbox, 0);
if (group_alpha)
draw_glyph(NULL, group_alpha, glyph, x, y, &bbox, 0);
fz_drop_glyph(ctx, glyph);
}
else
{
fz_path *path = fz_outline_glyph(ctx, span->font, gid, tm);
if (path)
{
fz_pixmap *old_dest;
float white = 1;
state = &dev->stack[dev->top];
old_dest = state[0].dest;
state[0].dest = state[0].mask;
state[0].mask = NULL;
fz_try(ctx)
{
fz_draw_stroke_path(ctx, devp, path, stroke, in_ctm, fz_device_gray(ctx), &white, 1, fz_default_color_params);
}
fz_always(ctx)
{
state[0].mask = state[0].dest;
state[0].dest = old_dest;
fz_drop_path(ctx, path);
}
fz_catch(ctx)
{
fz_rethrow(ctx);
}
}
else
{
fz_warn(ctx, "cannot render glyph for stroked clipping");
}
}
}
}
}
}
static void
fz_draw_ignore_text(fz_context *ctx, fz_device *dev, const fz_text *text, fz_matrix ctm)
{
}
static void
fz_draw_fill_shade(fz_context *ctx, fz_device *devp, fz_shade *shade, fz_matrix in_ctm, float alpha, fz_color_params color_params)
{
fz_draw_device *dev = (fz_draw_device*)devp;
fz_matrix ctm = fz_concat(in_ctm, dev->transform);
fz_irect bbox, scissor;
fz_pixmap *dest, *shape, *group_alpha;
unsigned char colorbv[FZ_MAX_COLORS + 1];
unsigned char alpha_byte = 255 * alpha;
fz_draw_state *state = &dev->stack[dev->top];
fz_overprint op = { { 0 } };
fz_overprint *eop;
fz_colorspace *colorspace = fz_default_colorspace(ctx, dev->default_cs, shade->colorspace);
if (dev->top == 0 && dev->resolve_spots)
state = push_group_for_separations(ctx, dev, color_params, dev->default_cs);
scissor = state->scissor;
bbox = fz_irect_from_rect(fz_bound_shade(ctx, shade, ctm));
bbox = fz_intersect_irect(bbox, scissor);
if (fz_is_empty_irect(bbox))
return;
if (state->blendmode & FZ_BLEND_KNOCKOUT)
state = fz_knockout_begin(ctx, dev);
fz_var(dest);
fz_var(shape);
fz_var(group_alpha);
dest = state->dest;
shape = state->shape;
group_alpha = state->group_alpha;
fz_try(ctx)
{
if (alpha < 1)
{
dest = fz_new_pixmap_with_bbox(ctx, state->dest->colorspace, bbox, state->dest->seps, state->dest->alpha);
if (state->dest->alpha)
fz_clear_pixmap(ctx, dest);
else
fz_copy_pixmap_rect(ctx, dest, state[0].dest, bbox, dev->default_cs);
if (shape)
{
shape = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, shape);
}
if (group_alpha)
{
group_alpha = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, group_alpha);
}
}
if (shade->use_background)
{
unsigned char *s;
int x, y, n, i;
/* Disable OPM */
color_params.opm = 0;
eop = resolve_color(ctx, &op, shade->background, colorspace, alpha, color_params, colorbv, state->dest);
n = dest->n;
if (fz_overprint_required(eop))
{
for (y = scissor.y0; y < scissor.y1; y++)
{
s = dest->samples + (unsigned int)((y - dest->y) * dest->stride + (scissor.x0 - dest->x) * n);
for (x = scissor.x0; x < scissor.x1; x++)
{
for (i = 0; i < n; i++)
if (fz_overprint_component(eop, i))
*s++ = colorbv[i];
}
}
}
else
{
for (y = scissor.y0; y < scissor.y1; y++)
{
s = dest->samples + (unsigned int)((y - dest->y) * dest->stride + (scissor.x0 - dest->x) * n);
for (x = scissor.x0; x < scissor.x1; x++)
{
for (i = 0; i < n; i++)
*s++ = colorbv[i];
}
}
}
if (shape)
{
for (y = scissor.y0; y < scissor.y1; y++)
{
s = shape->samples + (unsigned int)((y - shape->y) * shape->stride + (scissor.x0 - shape->x));
for (x = scissor.x0; x < scissor.x1; x++)
{
*s++ = 255;
}
}
}
if (group_alpha)
{
for (y = scissor.y0; y < scissor.y1; y++)
{
s = group_alpha->samples + (unsigned int)((y - group_alpha->y) * group_alpha->stride + (scissor.x0 - group_alpha->x));
for (x = scissor.x0; x < scissor.x1; x++)
{
*s++ = alpha_byte;
}
}
}
}
if (color_params.op)
eop = set_op_from_spaces(ctx, &op, dest, colorspace, 0);
else
eop = NULL;
fz_paint_shade(ctx, shade, colorspace, ctm, dest, color_params, bbox, eop);
if (shape)
fz_clear_pixmap_rect_with_value(ctx, shape, 255, bbox);
if (group_alpha)
fz_clear_pixmap_rect_with_value(ctx, group_alpha, 255, bbox);
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top, "");
fz_dump_blend(ctx, "Shade ", dest);
if (shape)
fz_dump_blend(ctx, "/S=", shape);
if (group_alpha)
fz_dump_blend(ctx, "/GA=", group_alpha);
printf("\n");
#endif
if (alpha < 1)
{
/* FIXME: eop */
fz_paint_pixmap(state->dest, dest, alpha * 255);
fz_drop_pixmap(ctx, dest);
dest = NULL;
if (shape)
{
fz_paint_pixmap(state->shape, shape, 255);
fz_drop_pixmap(ctx, shape);
shape = NULL;
}
if (group_alpha)
{
fz_paint_pixmap(state->group_alpha, group_alpha, alpha * 255);
fz_drop_pixmap(ctx, group_alpha);
group_alpha = NULL;
}
}
if (state->blendmode & FZ_BLEND_KNOCKOUT)
fz_knockout_end(ctx, dev);
}
fz_catch(ctx)
{
if (dest != state[0].dest) fz_drop_pixmap(ctx, dest);
if (shape != state[0].shape) fz_drop_pixmap(ctx, shape);
if (group_alpha != state[0].group_alpha) fz_drop_pixmap(ctx, group_alpha);
fz_rethrow(ctx);
}
}
static fz_pixmap *
fz_transform_pixmap(fz_context *ctx, fz_draw_device *dev, const fz_pixmap *image, fz_matrix *ctm, int x, int y, int dx, int dy, int gridfit, const fz_irect *clip)
{
fz_pixmap *scaled;
if (ctm->a != 0 && ctm->b == 0 && ctm->c == 0 && ctm->d != 0)
{
/* Unrotated or X-flip or Y-flip or XY-flip */
fz_matrix m = *ctm;
if (gridfit)
{
m = fz_gridfit_matrix(dev->flags & FZ_DEVFLAG_GRIDFIT_AS_TILED, m);
}
scaled = fz_scale_pixmap_cached(ctx, image, m.e, m.f, m.a, m.d, clip, dev->cache_x, dev->cache_y);
if (!scaled)
return NULL;
ctm->a = scaled->w;
ctm->d = scaled->h;
ctm->e = scaled->x;
ctm->f = scaled->y;
return scaled;
}
if (ctm->a == 0 && ctm->b != 0 && ctm->c != 0 && ctm->d == 0)
{
/* Other orthogonal flip/rotation cases */
fz_matrix m = *ctm;
fz_irect rclip;
if (gridfit)
m = fz_gridfit_matrix(dev->flags & FZ_DEVFLAG_GRIDFIT_AS_TILED, m);
if (clip)
{
rclip.x0 = clip->y0;
rclip.y0 = clip->x0;
rclip.x1 = clip->y1;
rclip.y1 = clip->x1;
}
scaled = fz_scale_pixmap_cached(ctx, image, m.f, m.e, m.b, m.c, (clip ? &rclip : NULL), dev->cache_x, dev->cache_y);
if (!scaled)
return NULL;
ctm->b = scaled->w;
ctm->c = scaled->h;
ctm->f = scaled->x;
ctm->e = scaled->y;
return scaled;
}
/* Downscale, non rectilinear case */
if (dx > 0 && dy > 0)
{
scaled = fz_scale_pixmap_cached(ctx, image, 0, 0, dx, dy, NULL, dev->cache_x, dev->cache_y);
return scaled;
}
return NULL;
}
int
fz_default_image_scale(void *arg, int dst_w, int dst_h, int src_w, int src_h)
{
(void)arg;
return dst_w < src_w && dst_h < src_h;
}
static fz_pixmap *
convert_pixmap_for_painting(fz_context *ctx, fz_pixmap *pixmap, fz_colorspace *model, fz_colorspace *src_cs, fz_pixmap *dest, fz_color_params color_params, fz_draw_device *dev, fz_overprint **eop)
{
fz_pixmap *converted;
if (fz_colorspace_is_device_n(ctx, src_cs) && dest->seps)
{
converted = fz_clone_pixmap_area_with_different_seps(ctx, pixmap, NULL, model, dest->seps, color_params, dev->default_cs);
*eop = set_op_from_spaces(ctx, *eop, dest, src_cs, 0);
}
else
{
converted = fz_convert_pixmap(ctx, pixmap, model, NULL, dev->default_cs, color_params, 1);
if (*eop)
{
if (fz_colorspace_type(ctx, model) != FZ_COLORSPACE_CMYK)
{
/* Can only overprint to CMYK based spaces */
*eop = NULL;
}
else if (!fz_colorspace_is_device_n(ctx, pixmap->colorspace))
{
int i;
int n = dest->n - dest->alpha;
for (i = 4; i < n; i++)
fz_set_overprint(*eop, i);
}
else
{
*eop = set_op_from_spaces(ctx, *eop, dest, src_cs, 0);
}
}
}
fz_drop_pixmap(ctx, pixmap);
return converted;
}
static void
fz_draw_fill_image(fz_context *ctx, fz_device *devp, fz_image *image, fz_matrix in_ctm, float alpha, fz_color_params color_params)
{
fz_draw_device *dev = (fz_draw_device*)devp;
fz_matrix local_ctm = fz_concat(in_ctm, dev->transform);
fz_pixmap *pixmap;
int after;
int dx, dy;
fz_draw_state *state = &dev->stack[dev->top];
fz_colorspace *model;
fz_irect clip;
fz_matrix inverse;
fz_irect src_area;
fz_colorspace *src_cs;
fz_overprint op = { { 0 } };
fz_overprint *eop = &op;
if (alpha == 0)
return;
if (dev->top == 0 && dev->resolve_spots)
state = push_group_for_separations(ctx, dev, color_params, dev->default_cs);
model = state->dest->colorspace;
clip = fz_intersect_irect(fz_pixmap_bbox(ctx, state->dest), state->scissor);
if (image->w == 0 || image->h == 0)
return;
if (color_params.op == 0)
eop = NULL;
/* ctm maps the image (expressed as the unit square) onto the
* destination device. Reverse that to get a mapping from
* the destination device to the source pixels. */
if (fz_try_invert_matrix(&inverse, local_ctm))
{
/* Not invertible. Could just bail? Use the whole image
* for now. */
src_area.x0 = 0;
src_area.x1 = image->w;
src_area.y0 = 0;
src_area.y1 = image->h;
}
else
{
float exp;
fz_rect rect;
fz_irect sane;
/* We want to scale from image coords, not from unit square */
inverse = fz_post_scale(inverse, image->w, image->h);
/* Are we scaling up or down? exp < 1 means scaling down. */
exp = fz_matrix_max_expansion(inverse);
rect = fz_rect_from_irect(clip);
rect = fz_transform_rect(rect, inverse);
/* Allow for support requirements for scalers. */
rect = fz_expand_rect(rect, fz_max(exp, 1) * 4);
src_area = fz_irect_from_rect(rect);
sane.x0 = 0;
sane.y0 = 0;
sane.x1 = image->w;
sane.y1 = image->h;
src_area = fz_intersect_irect(src_area, sane);
if (fz_is_empty_irect(src_area))
return;
}
pixmap = fz_get_pixmap_from_image(ctx, image, &src_area, &local_ctm, &dx, &dy);
src_cs = fz_default_colorspace(ctx, dev->default_cs, pixmap->colorspace);
/* convert images with more components (cmyk->rgb) before scaling */
/* convert images with fewer components (gray->rgb) after scaling */
/* convert images with expensive colorspace transforms after scaling */
fz_var(pixmap);
fz_try(ctx)
{
int conversion_required = (src_cs != model || state->dest->seps);
if (state->blendmode & FZ_BLEND_KNOCKOUT)
state = fz_knockout_begin(ctx, dev);
switch (fz_colorspace_type(ctx, src_cs))
{
case FZ_COLORSPACE_GRAY:
after = 1;
break;
case FZ_COLORSPACE_INDEXED:
after = 0;
break;
default:
if (fz_colorspace_n(ctx, src_cs) <= fz_colorspace_n(ctx, model))
after = 1;
else
after = 0;
break;
}
if (conversion_required && !after)
pixmap = convert_pixmap_for_painting(ctx, pixmap, model, src_cs, state->dest, color_params, dev, &eop);
if (!(devp->hints & FZ_DONT_INTERPOLATE_IMAGES) && ctx->tuning->image_scale(ctx->tuning->image_scale_arg, dx, dy, pixmap->w, pixmap->h))
{
int gridfit = alpha == 1.0f && !(dev->flags & FZ_DRAWDEV_FLAGS_TYPE3);
fz_pixmap *scaled = fz_transform_pixmap(ctx, dev, pixmap, &local_ctm, state->dest->x, state->dest->y, dx, dy, gridfit, &clip);
if (!scaled)
{
if (dx < 1)
dx = 1;
if (dy < 1)
dy = 1;
scaled = fz_scale_pixmap_cached(ctx, pixmap, pixmap->x, pixmap->y, dx, dy, NULL, dev->cache_x, dev->cache_y);
}
if (scaled)
{
fz_drop_pixmap(ctx, pixmap);
pixmap = scaled;
}
}
if (conversion_required && after)
{
#if FZ_PLOTTERS_RGB
if (state->dest->seps == NULL &&
((src_cs == fz_device_gray(ctx) && model == fz_device_rgb(ctx)) ||
(src_cs == fz_device_gray(ctx) && model == fz_device_bgr(ctx))))
{
/* We have special case rendering code for gray -> rgb/bgr */
}
else
#endif
pixmap = convert_pixmap_for_painting(ctx, pixmap, model, src_cs, state->dest, color_params, dev, &eop);
}
fz_paint_image(ctx, state->dest, &state->scissor, state->shape, state->group_alpha, pixmap, local_ctm, alpha * 255, !(devp->hints & FZ_DONT_INTERPOLATE_IMAGES), devp->flags & FZ_DEVFLAG_GRIDFIT_AS_TILED, eop);
if (state->blendmode & FZ_BLEND_KNOCKOUT)
fz_knockout_end(ctx, dev);
}
fz_always(ctx)
fz_drop_pixmap(ctx, pixmap);
fz_catch(ctx)
fz_rethrow(ctx);
}
static void
fz_draw_fill_image_mask(fz_context *ctx, fz_device *devp, fz_image *image, fz_matrix in_ctm,
fz_colorspace *colorspace_in, const float *color, float alpha, fz_color_params color_params)
{
fz_draw_device *dev = (fz_draw_device*)devp;
fz_matrix local_ctm = fz_concat(in_ctm, dev->transform);
unsigned char colorbv[FZ_MAX_COLORS + 1];
fz_pixmap *scaled = NULL;
fz_pixmap *pixmap;
int dx, dy;
fz_draw_state *state = &dev->stack[dev->top];
fz_irect clip;
fz_matrix inverse;
fz_irect src_area;
fz_colorspace *colorspace = NULL;
fz_overprint op = { { 0 } };
fz_overprint *eop;
if (alpha == 0)
return;
if (dev->top == 0 && dev->resolve_spots)
state = push_group_for_separations(ctx, dev, color_params, dev->default_cs);
if (colorspace_in)
colorspace = fz_default_colorspace(ctx, dev->default_cs, colorspace_in);
clip = fz_pixmap_bbox(ctx, state->dest);
clip = fz_intersect_irect(clip, state->scissor);
if (image->w == 0 || image->h == 0)
return;
/* ctm maps the image (expressed as the unit square) onto the
* destination device. Reverse that to get a mapping from
* the destination device to the source pixels. */
if (fz_try_invert_matrix(&inverse, local_ctm))
{
/* Not invertible. Could just bail? Use the whole image
* for now. */
src_area.x0 = 0;
src_area.x1 = image->w;
src_area.y0 = 0;
src_area.y1 = image->h;
}
else
{
float exp;
fz_rect rect;
fz_irect sane;
/* We want to scale from image coords, not from unit square */
inverse = fz_post_scale(inverse, image->w, image->h);
/* Are we scaling up or down? exp < 1 means scaling down. */
exp = fz_matrix_max_expansion(inverse);
rect = fz_rect_from_irect(clip);
rect = fz_transform_rect(rect, inverse);
/* Allow for support requirements for scalers. */
rect = fz_expand_rect(rect, fz_max(exp, 1) * 4);
src_area = fz_irect_from_rect(rect);
sane.x0 = 0;
sane.y0 = 0;
sane.x1 = image->w;
sane.y1 = image->h;
src_area = fz_intersect_irect(src_area, sane);
if (fz_is_empty_irect(src_area))
return;
}
pixmap = fz_get_pixmap_from_image(ctx, image, &src_area, &local_ctm, &dx, &dy);
fz_var(pixmap);
fz_try(ctx)
{
if (state->blendmode & FZ_BLEND_KNOCKOUT)
state = fz_knockout_begin(ctx, dev);
if (!(devp->hints & FZ_DONT_INTERPOLATE_IMAGES) && ctx->tuning->image_scale(ctx->tuning->image_scale_arg, dx, dy, pixmap->w, pixmap->h))
{
int gridfit = alpha == 1.0f && !(dev->flags & FZ_DRAWDEV_FLAGS_TYPE3);
scaled = fz_transform_pixmap(ctx, dev, pixmap, &local_ctm, state->dest->x, state->dest->y, dx, dy, gridfit, &clip);
if (!scaled)
{
if (dx < 1)
dx = 1;
if (dy < 1)
dy = 1;
scaled = fz_scale_pixmap_cached(ctx, pixmap, pixmap->x, pixmap->y, dx, dy, NULL, dev->cache_x, dev->cache_y);
}
if (scaled)
{
fz_drop_pixmap(ctx, pixmap);
pixmap = scaled;
}
}
eop = resolve_color(ctx, &op, color, colorspace, alpha, color_params, colorbv, state->dest);
fz_paint_image_with_color(ctx, state->dest, &state->scissor, state->shape, state->group_alpha, pixmap, local_ctm, colorbv, !(devp->hints & FZ_DONT_INTERPOLATE_IMAGES), devp->flags & FZ_DEVFLAG_GRIDFIT_AS_TILED, eop);
if (state->blendmode & FZ_BLEND_KNOCKOUT)
fz_knockout_end(ctx, dev);
}
fz_always(ctx)
fz_drop_pixmap(ctx, pixmap);
fz_catch(ctx)
fz_rethrow(ctx);
}
static void
fz_draw_clip_image_mask(fz_context *ctx, fz_device *devp, fz_image *image, fz_matrix in_ctm, fz_rect scissor)
{
fz_draw_device *dev = (fz_draw_device*)devp;
fz_matrix local_ctm = fz_concat(in_ctm, dev->transform);
fz_irect bbox;
fz_pixmap *scaled = NULL;
fz_pixmap *pixmap = NULL;
int dx, dy;
fz_draw_state *state = push_stack(ctx, dev, "clip image mask");
fz_colorspace *model = state->dest->colorspace;
fz_irect clip;
fz_var(pixmap);
if (dev->top == 0 && dev->resolve_spots)
state = push_group_for_separations(ctx, dev, fz_default_color_params /* FIXME */, dev->default_cs);
clip = fz_pixmap_bbox(ctx, state->dest);
clip = fz_intersect_irect(clip, state->scissor);
if (image->w == 0 || image->h == 0)
{
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top-1, "Clip (image mask) (empty) begin\n");
#endif
state[1].scissor = fz_empty_irect;
state[1].mask = NULL;
return;
}
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top-1, "Clip (image mask) begin\n");
#endif
bbox = fz_irect_from_rect(fz_transform_rect(fz_unit_rect, local_ctm));
bbox = fz_intersect_irect(bbox, state->scissor);
if (!fz_is_infinite_rect(scissor))
{
fz_rect tscissor = fz_transform_rect(scissor, dev->transform);
bbox = fz_intersect_irect(bbox, fz_irect_from_rect(tscissor));
}
fz_try(ctx)
{
pixmap = fz_get_pixmap_from_image(ctx, image, NULL, &local_ctm, &dx, &dy);
state[1].mask = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, state[1].mask);
state[1].dest = fz_new_pixmap_with_bbox(ctx, model, bbox, state[0].dest->seps, state[0].dest->alpha);
fz_copy_pixmap_rect(ctx, state[1].dest, state[0].dest, bbox, dev->default_cs);
if (state[0].shape)
{
state[1].shape = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, state[1].shape);
}
if (state[0].group_alpha)
{
state[1].group_alpha = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, state[1].group_alpha);
}
state[1].blendmode |= FZ_BLEND_ISOLATED;
state[1].scissor = bbox;
if (!(devp->hints & FZ_DONT_INTERPOLATE_IMAGES) && ctx->tuning->image_scale(ctx->tuning->image_scale_arg, dx, dy, pixmap->w, pixmap->h))
{
int gridfit = !(dev->flags & FZ_DRAWDEV_FLAGS_TYPE3);
scaled = fz_transform_pixmap(ctx, dev, pixmap, &local_ctm, state->dest->x, state->dest->y, dx, dy, gridfit, &clip);
if (!scaled)
{
if (dx < 1)
dx = 1;
if (dy < 1)
dy = 1;
scaled = fz_scale_pixmap_cached(ctx, pixmap, pixmap->x, pixmap->y, dx, dy, NULL, dev->cache_x, dev->cache_y);
}
if (scaled)
{
fz_drop_pixmap(ctx, pixmap);
pixmap = scaled;
}
}
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top, "");
fz_dump_blend(ctx, "Creating imagemask: plotting ", pixmap);
fz_dump_blend(ctx, " onto ", state[1].mask);
if (state[1].shape)
fz_dump_blend(ctx, "/S=", state[1].shape);
if (state[1].group_alpha)
fz_dump_blend(ctx, "/GA=", state[1].group_alpha);
#endif
fz_paint_image(ctx, state[1].mask, &bbox, state[1].shape, state[1].group_alpha, pixmap, local_ctm, 255, !(devp->hints & FZ_DONT_INTERPOLATE_IMAGES), devp->flags & FZ_DEVFLAG_GRIDFIT_AS_TILED, 0);
#ifdef DUMP_GROUP_BLENDS
fz_dump_blend(ctx, " to get ", state[1].mask);
if (state[1].shape)
fz_dump_blend(ctx, "/S=", state[1].shape);
if (state[1].group_alpha)
fz_dump_blend(ctx, "/GA=", state[1].group_alpha);
printf("\n");
#endif
}
fz_always(ctx)
fz_drop_pixmap(ctx, pixmap);
fz_catch(ctx)
fz_rethrow(ctx);
}
static void
fz_draw_pop_clip(fz_context *ctx, fz_device *devp)
{
fz_draw_device *dev = (fz_draw_device*)devp;
fz_draw_state *state;
if (dev->top == 0)
fz_throw(ctx, FZ_ERROR_GENERIC, "unexpected pop clip");
state = pop_stack(ctx, dev, "clip");
/* We can get here with state[1].mask == NULL if the clipping actually
* resolved to a rectangle earlier.
*/
if (state[1].mask)
{
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top, "");
fz_dump_blend(ctx, "Clipping ", state[1].dest);
if (state[1].shape)
fz_dump_blend(ctx, "/S=", state[1].shape);
if (state[1].group_alpha)
fz_dump_blend(ctx, "/GA=", state[1].group_alpha);
fz_dump_blend(ctx, " onto ", state[0].dest);
if (state[0].shape)
fz_dump_blend(ctx, "/S=", state[0].shape);
if (state[0].group_alpha)
fz_dump_blend(ctx, "/GA=", state[0].group_alpha);
fz_dump_blend(ctx, " with ", state[1].mask);
#endif
fz_paint_pixmap_with_mask(state[0].dest, state[1].dest, state[1].mask);
if (state[0].shape != state[1].shape)
{
fz_paint_pixmap_with_mask(state[0].shape, state[1].shape, state[1].mask);
fz_drop_pixmap(ctx, state[1].shape);
state[1].shape = NULL;
}
if (state[0].group_alpha != state[1].group_alpha)
{
fz_paint_pixmap_with_mask(state[0].group_alpha, state[1].group_alpha, state[1].mask);
fz_drop_pixmap(ctx, state[1].group_alpha);
state[1].group_alpha = NULL;
}
fz_drop_pixmap(ctx, state[1].mask);
state[1].mask = NULL;
fz_drop_pixmap(ctx, state[1].dest);
state[1].dest = NULL;
#ifdef DUMP_GROUP_BLENDS
fz_dump_blend(ctx, " to get ", state[0].dest);
if (state[0].shape)
fz_dump_blend(ctx, "/S=", state[0].shape);
if (state[0].group_alpha)
fz_dump_blend(ctx, "/GA=", state[0].group_alpha);
printf("\n");
#endif
}
else
{
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top, "Clip end\n");
#endif
}
}
static void
fz_draw_begin_mask(fz_context *ctx, fz_device *devp, fz_rect area, int luminosity, fz_colorspace *colorspace_in, const float *colorfv, fz_color_params color_params)
{
fz_draw_device *dev = (fz_draw_device*)devp;
fz_pixmap *dest;
fz_irect bbox;
fz_draw_state *state = push_stack(ctx, dev, "mask");
fz_pixmap *shape = state->shape;
fz_pixmap *group_alpha = state->group_alpha;
fz_rect trect;
fz_colorspace *colorspace = NULL;
if (dev->top == 0 && dev->resolve_spots)
state = push_group_for_separations(ctx, dev, color_params, dev->default_cs);
if (colorspace_in)
colorspace = fz_default_colorspace(ctx, dev->default_cs, colorspace_in);
trect = fz_transform_rect(area, dev->transform);
bbox = fz_intersect_irect(fz_irect_from_rect(trect), state->scissor);
/* Reset the blendmode for the mask rendering. In particular,
* don't carry forward knockout or isolated. */
state[1].blendmode = 0;
/* If luminosity, then we generate a mask from the greyscale value of the shapes.
* If !luminosity, then we generate a mask from the alpha value of the shapes.
*/
if (luminosity)
state[1].dest = dest = fz_new_pixmap_with_bbox(ctx, fz_device_gray(ctx), bbox, NULL, 0);
else
state[1].dest = dest = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
if (state->shape)
{
/* FIXME: If we ever want to support AIS true, then
* we probably want to create a shape pixmap here,
* using: shape = fz_new_pixmap_with_bbox(NULL, bbox);
* then, in the end_mask code, we create the mask
* from this rather than dest.
*/
state[1].shape = shape = NULL;
}
if (state->group_alpha)
{
state[1].group_alpha = group_alpha = NULL;
}
if (luminosity)
{
float bc;
if (!colorspace)
colorspace = fz_device_gray(ctx);
fz_convert_color(ctx, colorspace, colorfv, fz_device_gray(ctx), &bc, NULL, color_params);
fz_clear_pixmap_with_value(ctx, dest, bc * 255);
if (shape)
fz_clear_pixmap_with_value(ctx, shape, 255);
if (group_alpha)
fz_clear_pixmap_with_value(ctx, group_alpha, 255);
}
else
{
fz_clear_pixmap(ctx, dest);
if (shape)
fz_clear_pixmap(ctx, shape);
if (group_alpha)
fz_clear_pixmap(ctx, group_alpha);
}
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top-1, "Mask begin\n");
#endif
state[1].scissor = bbox;
}
static void
fz_draw_end_mask(fz_context *ctx, fz_device *devp)
{
fz_draw_device *dev = (fz_draw_device*)devp;
fz_pixmap *temp, *dest;
fz_irect bbox;
fz_draw_state *state;
if (dev->top == 0)
fz_throw(ctx, FZ_ERROR_GENERIC, "unexpected end mask");
state = convert_stack(ctx, dev, "mask");
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top-1, "Mask -> Clip: ");
fz_dump_blend(ctx, "Mask ", state[1].dest);
if (state[1].shape)
fz_dump_blend(ctx, "/S=", state[1].shape);
if (state[1].group_alpha)
fz_dump_blend(ctx, "/GA=", state[1].group_alpha);
#endif
{
/* convert to alpha mask */
temp = fz_alpha_from_gray(ctx, state[1].dest);
if (state[1].mask != state[0].mask)
fz_drop_pixmap(ctx, state[1].mask);
state[1].mask = temp;
if (state[1].dest != state[0].dest)
fz_drop_pixmap(ctx, state[1].dest);
state[1].dest = NULL;
if (state[1].shape != state[0].shape)
fz_drop_pixmap(ctx, state[1].shape);
state[1].shape = NULL;
if (state[1].group_alpha != state[0].group_alpha)
fz_drop_pixmap(ctx, state[1].group_alpha);
state[1].group_alpha = NULL;
#ifdef DUMP_GROUP_BLENDS
fz_dump_blend(ctx, "-> Clip ", temp);
printf("\n");
#endif
/* create new dest scratch buffer */
bbox = fz_pixmap_bbox(ctx, temp);
dest = fz_new_pixmap_with_bbox(ctx, state->dest->colorspace, bbox, state->dest->seps, state->dest->alpha);
fz_copy_pixmap_rect(ctx, dest, state->dest, bbox, dev->default_cs);
/* push soft mask as clip mask */
state[1].dest = dest;
state[1].blendmode |= FZ_BLEND_ISOLATED;
/* If we have a shape, then it'll need to be masked with the
* clip mask when we pop. So create a new shape now. */
if (state[0].shape)
{
state[1].shape = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, state[1].shape);
}
if (state[0].group_alpha)
{
state[1].group_alpha = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, state[1].group_alpha);
}
state[1].scissor = bbox;
}
}
static void
fz_draw_begin_group(fz_context *ctx, fz_device *devp, fz_rect area, fz_colorspace *cs, int isolated, int knockout, int blendmode, float alpha)
{
fz_draw_device *dev = (fz_draw_device*)devp;
fz_irect bbox;
fz_pixmap *dest;
fz_draw_state *state = &dev->stack[dev->top];
fz_colorspace *model = state->dest->colorspace;
fz_rect trect;
if (dev->top == 0 && dev->resolve_spots)
state = push_group_for_separations(ctx, dev, fz_default_color_params /* FIXME */, dev->default_cs);
if (cs != NULL)
model = fz_default_colorspace(ctx, dev->default_cs, cs);
if (state->blendmode & FZ_BLEND_KNOCKOUT)
fz_knockout_begin(ctx, dev);
state = push_stack(ctx, dev, "group");
trect = fz_transform_rect(area, dev->transform);
bbox = fz_intersect_irect(fz_irect_from_rect(trect), state->scissor);
#ifndef ATTEMPT_KNOCKOUT_AND_ISOLATED
knockout = 0;
isolated = 1;
#endif
state[1].dest = dest = fz_new_pixmap_with_bbox(ctx, model, bbox, state[0].dest->seps, state[0].dest->alpha || isolated);
if (isolated)
{
fz_clear_pixmap(ctx, dest);
state[1].group_alpha = NULL;
}
else
{
fz_copy_pixmap_rect(ctx, dest, state[0].dest, bbox, dev->default_cs);
state[1].group_alpha = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, state[1].group_alpha);
}
/* shape is inherited from the previous group */
state[1].alpha = alpha;
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top-1, "");
{
char text[240];
char atext[80];
char btext[80];
if (alpha != 1)
sprintf(atext, " (alpha %g)", alpha);
else
atext[0] = 0;
if (blendmode != 0)
sprintf(btext, " (blend %d)", blendmode);
else
btext[0] = 0;
sprintf(text, "Group begin%s%s%s%s: background is ", isolated ? " (isolated)" : "", knockout ? " (knockout)" : "", atext, btext);
fz_dump_blend(ctx, text, state[1].dest);
}
if (state[1].shape)
fz_dump_blend(ctx, "/S=", state[1].shape);
if (state[1].group_alpha)
fz_dump_blend(ctx, "/GA=", state[1].group_alpha);
printf("\n");
#endif
state[1].scissor = bbox;
state[1].blendmode = blendmode | (isolated ? FZ_BLEND_ISOLATED : 0) | (knockout ? FZ_BLEND_KNOCKOUT : 0);
}
static void
fz_draw_end_group(fz_context *ctx, fz_device *devp)
{
fz_draw_device *dev = (fz_draw_device*)devp;
int blendmode;
int isolated;
float alpha;
fz_draw_state *state;
if (dev->top == 0)
fz_throw(ctx, FZ_ERROR_GENERIC, "unexpected end group");
state = pop_stack(ctx, dev, "group");
alpha = state[1].alpha;
blendmode = state[1].blendmode & FZ_BLEND_MODEMASK;
isolated = state[1].blendmode & FZ_BLEND_ISOLATED;
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top, "");
fz_dump_blend(ctx, "Group end: blending ", state[1].dest);
if (state[1].shape)
fz_dump_blend(ctx, "/S=", state[1].shape);
if (state[1].group_alpha)
fz_dump_blend(ctx, "/GA=", state[1].group_alpha);
fz_dump_blend(ctx, " onto ", state[0].dest);
if (state[0].shape)
fz_dump_blend(ctx, "/S=", state[0].shape);
if (state[0].group_alpha)
fz_dump_blend(ctx, "/GA=", state[0].group_alpha);
if (alpha != 1.0f)
printf(" (alpha %g)", alpha);
if (blendmode != 0)
printf(" (blend %d)", blendmode);
if (isolated != 0)
printf(" (isolated)");
if (state[1].blendmode & FZ_BLEND_KNOCKOUT)
printf(" (knockout)");
#endif
if (state[0].dest->colorspace != state[1].dest->colorspace)
{
fz_pixmap *converted = fz_convert_pixmap(ctx, state[1].dest, state[0].dest->colorspace, NULL, dev->default_cs, fz_default_color_params, 1);
fz_drop_pixmap(ctx, state[1].dest);
state[1].dest = converted;
}
if ((blendmode == 0) && (state[0].shape == state[1].shape) && (state[0].group_alpha == state[1].group_alpha))
fz_paint_pixmap(state[0].dest, state[1].dest, alpha * 255);
else
fz_blend_pixmap(ctx, state[0].dest, state[1].dest, alpha * 255, blendmode, isolated, state[1].group_alpha);
if (state[0].shape != state[1].shape)
{
/* The 'D' on page 7 of Altona_Technical_v20_x4.pdf goes wrong if this
* isn't alpha * 255, as the blend back fails to take account of alpha. */
if (state[0].shape)
{
if (state[1].shape)
fz_paint_pixmap(state[0].shape, state[1].shape, alpha * 255);
else
fz_paint_pixmap_alpha(state[0].shape, state[1].dest, alpha * 255);
}
}
assert(state[0].group_alpha == NULL || state[0].group_alpha != state[1].group_alpha);
if (state[0].group_alpha && state[0].group_alpha != state[1].group_alpha)
{
/* The 'D' on page 7 of Altona_Technical_v20_x4.pdf uses an isolated group,
* and goes wrong if this is 255 * alpha, as an alpha effectively gets
* applied twice. CATX5233 page 7 uses a non-isolated group, and goes wrong
* if alpha isn't applied here. */
if (state[1].group_alpha)
fz_paint_pixmap(state[0].group_alpha, state[1].group_alpha, isolated ? 255 : alpha * 255);
else
fz_paint_pixmap_alpha(state[0].group_alpha, state[1].dest, isolated ? 255 : alpha * 255);
}
assert(state[0].dest != state[1].dest);
#ifdef DUMP_GROUP_BLENDS
fz_dump_blend(ctx, " to get ", state[0].dest);
if (state[0].shape)
fz_dump_blend(ctx, "/S=", state[0].shape);
if (state[0].group_alpha)
fz_dump_blend(ctx, "/GA=", state[0].group_alpha);
printf("\n");
#endif
if (state[0].shape != state[1].shape)
{
fz_drop_pixmap(ctx, state[1].shape);
state[1].shape = NULL;
}
fz_drop_pixmap(ctx, state[1].group_alpha);
state[1].group_alpha = NULL;
fz_drop_pixmap(ctx, state[1].dest);
state[1].dest = NULL;
if (state[0].blendmode & FZ_BLEND_KNOCKOUT)
fz_knockout_end(ctx, dev);
}
typedef struct
{
int refs;
float ctm[4];
int id;
char has_shape;
char has_group_alpha;
fz_colorspace *cs;
} tile_key;
typedef struct
{
fz_storable storable;
fz_pixmap *dest;
fz_pixmap *shape;
fz_pixmap *group_alpha;
} tile_record;
static int
fz_make_hash_tile_key(fz_context *ctx, fz_store_hash *hash, void *key_)
{
tile_key *key = key_;
hash->u.im.id = key->id;
hash->u.im.has_shape = key->has_shape;
hash->u.im.has_group_alpha = key->has_group_alpha;
hash->u.im.m[0] = key->ctm[0];
hash->u.im.m[1] = key->ctm[1];
hash->u.im.m[2] = key->ctm[2];
hash->u.im.m[3] = key->ctm[3];
hash->u.im.ptr = key->cs;
return 1;
}
static void *
fz_keep_tile_key(fz_context *ctx, void *key_)
{
tile_key *key = key_;
return fz_keep_imp(ctx, key, &key->refs);
}
static void
fz_drop_tile_key(fz_context *ctx, void *key_)
{
tile_key *key = key_;
if (fz_drop_imp(ctx, key, &key->refs))
{
fz_drop_colorspace_store_key(ctx, key->cs);
fz_free(ctx, key);
}
}
static int
fz_cmp_tile_key(fz_context *ctx, void *k0_, void *k1_)
{
tile_key *k0 = k0_;
tile_key *k1 = k1_;
return k0->id == k1->id &&
k0->has_shape == k1->has_shape &&
k0->has_group_alpha == k1->has_group_alpha &&
k0->ctm[0] == k1->ctm[0] &&
k0->ctm[1] == k1->ctm[1] &&
k0->ctm[2] == k1->ctm[2] &&
k0->ctm[3] == k1->ctm[3] &&
k0->cs == k1->cs;
}
static void
fz_format_tile_key(fz_context *ctx, char *s, int n, void *key_)
{
tile_key *key = (tile_key *)key_;
fz_snprintf(s, n, "(tile id=%x, ctm=%g %g %g %g, cs=%x, shape=%d, ga=%d)",
key->id, key->ctm[0], key->ctm[1], key->ctm[2], key->ctm[3], key->cs,
key->has_shape, key->has_group_alpha);
}
static const fz_store_type fz_tile_store_type =
{
fz_make_hash_tile_key,
fz_keep_tile_key,
fz_drop_tile_key,
fz_cmp_tile_key,
fz_format_tile_key,
NULL
};
static void
fz_drop_tile_record_imp(fz_context *ctx, fz_storable *storable)
{
tile_record *tr = (tile_record *)storable;
fz_drop_pixmap(ctx, tr->dest);
fz_drop_pixmap(ctx, tr->shape);
fz_drop_pixmap(ctx, tr->group_alpha);
fz_free(ctx, tr);
}
static void
fz_drop_tile_record(fz_context *ctx, tile_record *tile)
{
fz_drop_storable(ctx, &tile->storable);
}
static tile_record *
fz_new_tile_record(fz_context *ctx, fz_pixmap *dest, fz_pixmap *shape, fz_pixmap *group_alpha)
{
tile_record *tile = fz_malloc_struct(ctx, tile_record);
FZ_INIT_STORABLE(tile, 1, fz_drop_tile_record_imp);
tile->dest = fz_keep_pixmap(ctx, dest);
tile->shape = fz_keep_pixmap(ctx, shape);
tile->group_alpha = fz_keep_pixmap(ctx, group_alpha);
return tile;
}
size_t
fz_tile_size(fz_context *ctx, tile_record *tile)
{
if (!tile)
return 0;
return sizeof(*tile) + fz_pixmap_size(ctx, tile->dest) + fz_pixmap_size(ctx, tile->shape) + fz_pixmap_size(ctx, tile->group_alpha);
}
static int
fz_draw_begin_tile(fz_context *ctx, fz_device *devp, fz_rect area, fz_rect view, float xstep, float ystep, fz_matrix in_ctm, int id)
{
fz_draw_device *dev = (fz_draw_device*)devp;
fz_matrix ctm = fz_concat(in_ctm, dev->transform);
fz_pixmap *dest = NULL;
fz_pixmap *shape, *group_alpha;
fz_irect bbox;
fz_draw_state *state = &dev->stack[dev->top];
fz_colorspace *model = state->dest->colorspace;
fz_rect local_view;
if (dev->top == 0 && dev->resolve_spots)
state = push_group_for_separations(ctx, dev, fz_default_color_params /* FIXME */, dev->default_cs);
/* area, view, xstep, ystep are in pattern space */
/* ctm maps from pattern space to device space */
if (state->blendmode & FZ_BLEND_KNOCKOUT)
fz_knockout_begin(ctx, dev);
state = push_stack(ctx, dev, "tile");
local_view = fz_transform_rect(view, ctm);
bbox = fz_irect_from_rect(local_view);
/* We should never have a bbox that entirely covers our destination.
* If we do, then the check for only 1 tile being visible above has
* failed. Actually, this *can* fail due to the round_rect, at extreme
* resolutions, so disable this assert.
* assert(bbox.x0 > state->dest->x || bbox.x1 < state->dest->x + state->dest->w ||
* bbox.y0 > state->dest->y || bbox.y1 < state->dest->y + state->dest->h);
*/
/* Check to see if we have one cached */
if (id)
{
tile_key tk;
tile_record *tile;
tk.ctm[0] = ctm.a;
tk.ctm[1] = ctm.b;
tk.ctm[2] = ctm.c;
tk.ctm[3] = ctm.d;
tk.id = id;
tk.cs = state[1].dest->colorspace;
tk.has_shape = (state[1].shape != NULL);
tk.has_group_alpha = (state[1].group_alpha != NULL);
tile = fz_find_item(ctx, fz_drop_tile_record_imp, &tk, &fz_tile_store_type);
if (tile)
{
state[1].dest = fz_keep_pixmap(ctx, tile->dest);
state[1].shape = fz_keep_pixmap(ctx, tile->shape);
state[1].group_alpha = fz_keep_pixmap(ctx, tile->group_alpha);
state[1].blendmode |= FZ_BLEND_ISOLATED;
state[1].xstep = xstep;
state[1].ystep = ystep;
state[1].id = id;
state[1].encache = 0;
state[1].area = fz_irect_from_rect(area);
state[1].ctm = ctm;
state[1].scissor = bbox;
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top-1, "Tile begin (cached)\n");
#endif
fz_drop_tile_record(ctx, tile);
return 1;
}
}
/* Patterns can be transparent, so we need to have an alpha here. */
state[1].dest = dest = fz_new_pixmap_with_bbox(ctx, model, bbox, state[0].dest->seps, 1);
fz_clear_pixmap(ctx, dest);
shape = state[0].shape;
if (shape)
{
state[1].shape = shape = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, shape);
}
group_alpha = state[0].group_alpha;
if (group_alpha)
{
state[1].group_alpha = group_alpha = fz_new_pixmap_with_bbox(ctx, NULL, bbox, NULL, 1);
fz_clear_pixmap(ctx, group_alpha);
}
state[1].blendmode |= FZ_BLEND_ISOLATED;
state[1].xstep = xstep;
state[1].ystep = ystep;
state[1].id = id;
state[1].encache = 1;
state[1].area = fz_irect_from_rect(area);
state[1].ctm = ctm;
state[1].scissor = bbox;
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top-1, "Tile begin\n");
#endif
return 0;
}
static void
fz_draw_end_tile(fz_context *ctx, fz_device *devp)
{
fz_draw_device *dev = (fz_draw_device*)devp;
float xstep, ystep;
fz_matrix ttm, ctm, shapectm, gactm;
fz_irect area, scissor, tile_bbox;
fz_rect scissor_tmp, tile_tmp;
int x0, y0, x1, y1, x, y, extra_x, extra_y;
fz_draw_state *state;
fz_pixmap *dest = NULL;
fz_pixmap *shape = NULL;
fz_pixmap *group_alpha = NULL;
if (dev->top == 0)
fz_throw(ctx, FZ_ERROR_GENERIC, "unexpected end tile");
state = pop_stack(ctx, dev, "tile");
xstep = state[1].xstep;
ystep = state[1].ystep;
area = state[1].area;
ctm = state[1].ctm;
/* Fudge the scissor bbox a little to allow for inaccuracies in the
* matrix inversion. */
ttm = fz_invert_matrix(ctm);
scissor_tmp = fz_rect_from_irect(state[0].scissor);
scissor_tmp = fz_expand_rect(scissor_tmp, 1);
scissor_tmp = fz_transform_rect(scissor_tmp, ttm);
scissor = fz_irect_from_rect(scissor_tmp);
area = fz_intersect_irect(area, scissor);
tile_bbox.x0 = state[1].dest->x;
tile_bbox.y0 = state[1].dest->y;
tile_bbox.x1 = state[1].dest->w + tile_bbox.x0;
tile_bbox.y1 = state[1].dest->h + tile_bbox.y0;
tile_tmp = fz_rect_from_irect(tile_bbox);
tile_tmp = fz_expand_rect(tile_tmp, 1);
tile_tmp = fz_transform_rect(tile_tmp, ttm);
/* FIXME: area is a bbox, so FP not appropriate here */
/* In PDF files xstep/ystep can be smaller than view (the area of a
* single tile) (see fts_15_1506.pdf for an example). This means that
* we have to bias the left hand/bottom edge calculations by the
* difference between the step and the width/height of the tile. */
/* scissor, xstep and area are all in pattern space. */
extra_x = tile_tmp.x1 - tile_tmp.x0 - xstep;
if (extra_x < 0)
extra_x = 0;
extra_y = tile_tmp.y1 - tile_tmp.y0 - ystep;
if (extra_y < 0)
extra_y = 0;
x0 = floorf((area.x0 - tile_tmp.x0 - extra_x) / xstep);
y0 = floorf((area.y0 - tile_tmp.y0 - extra_y) / ystep);
x1 = ceilf((area.x1 - tile_tmp.x0 + extra_x) / xstep);
y1 = ceilf((area.y1 - tile_tmp.y0 + extra_y) / ystep);
ctm.e = state[1].dest->x;
ctm.f = state[1].dest->y;
if (state[1].shape)
{
shapectm = ctm;
shapectm.e = state[1].shape->x;
shapectm.f = state[1].shape->y;
}
if (state[1].group_alpha)
{
gactm = ctm;
gactm.e = state[1].group_alpha->x;
gactm.f = state[1].group_alpha->y;
}
#ifdef DUMP_GROUP_BLENDS
dump_spaces(dev->top, "");
fz_dump_blend(ctx, "Tiling ", state[1].dest);
if (state[1].shape)
fz_dump_blend(ctx, "/S=", state[1].shape);
if (state[1].group_alpha)
fz_dump_blend(ctx, "/GA=", state[1].group_alpha);
fz_dump_blend(ctx, " onto ", state[0].dest);
if (state[0].shape)
fz_dump_blend(ctx, "/S=", state[0].shape);
if (state[0].group_alpha)
fz_dump_blend(ctx, "/GA=", state[0].group_alpha);
#endif
dest = fz_new_pixmap_from_pixmap(ctx, state[1].dest, NULL);
fz_var(shape);
fz_var(group_alpha);
fz_try(ctx)
{
shape = fz_new_pixmap_from_pixmap(ctx, state[1].shape, NULL);
group_alpha = fz_new_pixmap_from_pixmap(ctx, state[1].group_alpha, NULL);
for (y = y0; y < y1; y++)
{
for (x = x0; x < x1; x++)
{
ttm = fz_pre_translate(ctm, x * xstep, y * ystep);
dest->x = ttm.e;
dest->y = ttm.f;
/* Check for overflow due to float -> int conversions */
if (dest->x > 0 && dest->x + dest->w < 0)
continue;
if (dest->y > 0 && dest->y + dest->h < 0)
continue;
fz_paint_pixmap_with_bbox(state[0].dest, dest, 255, state[0].scissor);
if (shape)
{
ttm = fz_pre_translate(shapectm, x * xstep, y * ystep);
shape->x = ttm.e;
shape->y = ttm.f;
fz_paint_pixmap_with_bbox(state[0].shape, shape, 255, state[0].scissor);
}
if (group_alpha)
{
ttm = fz_pre_translate(gactm, x * xstep, y * ystep);
group_alpha->x = ttm.e;
group_alpha->y = ttm.f;
fz_paint_pixmap_with_bbox(state[0].group_alpha, group_alpha, 255, state[0].scissor);
}
}
}
}
fz_always(ctx)
{
fz_drop_pixmap(ctx, dest);
fz_drop_pixmap(ctx, shape);
fz_drop_pixmap(ctx, group_alpha);
}
fz_catch(ctx)
fz_rethrow(ctx);
/* Now we try to cache the tiles. Any failure here will just result in us not caching. */
if (state[1].encache && state[1].id != 0)
{
tile_record *tile = NULL;
tile_key *key = NULL;
fz_var(tile);
fz_var(key);
fz_try(ctx)
{
tile_record *existing_tile;
tile = fz_new_tile_record(ctx, state[1].dest, state[1].shape, state[1].group_alpha);
key = fz_malloc_struct(ctx, tile_key);
key->refs = 1;
key->id = state[1].id;
key->ctm[0] = ctm.a;
key->ctm[1] = ctm.b;
key->ctm[2] = ctm.c;
key->ctm[3] = ctm.d;
key->cs = fz_keep_colorspace_store_key(ctx, state[1].dest->colorspace);
key->has_shape = (state[1].shape != NULL);
key->has_group_alpha = (state[1].group_alpha != NULL);
existing_tile = fz_store_item(ctx, key, tile, fz_tile_size(ctx, tile), &fz_tile_store_type);
if (existing_tile)
{
/* We already have a tile. This will either have been
* produced by a racing thread, or there is already
* an entry for this one in the store. */
fz_drop_tile_record(ctx, tile);
tile = existing_tile;
}
}
fz_always(ctx)
{
fz_drop_tile_key(ctx, key);
fz_drop_tile_record(ctx, tile);
}
fz_catch(ctx)
{
/* Do nothing */
}
}
fz_drop_pixmap(ctx, state[1].dest);
state[1].dest = NULL;
fz_drop_pixmap(ctx, state[1].shape);
state[1].shape = NULL;
fz_drop_pixmap(ctx, state[1].group_alpha);
state[1].group_alpha = NULL;
#ifdef DUMP_GROUP_BLENDS
fz_dump_blend(ctx, " to get ", state[0].dest);
if (state[0].shape)
fz_dump_blend(ctx, "/S=", state[0].shape);
if (state[0].group_alpha)
fz_dump_blend(ctx, "/GA=", state[0].group_alpha);
printf("\n");
#endif
if (state->blendmode & FZ_BLEND_KNOCKOUT)
fz_knockout_end(ctx, dev);
}
static void
fz_draw_render_flags(fz_context *ctx, fz_device *devp, int set, int clear)
{
fz_draw_device *dev = (fz_draw_device*)devp;
dev->flags = (dev->flags | set ) & ~clear;
}
static void
fz_draw_set_default_colorspaces(fz_context *ctx, fz_device *devp, fz_default_colorspaces *default_cs)
{
fz_draw_device *dev = (fz_draw_device*)devp;
fz_drop_default_colorspaces(ctx, dev->default_cs);
dev->default_cs = fz_keep_default_colorspaces(ctx, default_cs);
}
static void
fz_draw_close_device(fz_context *ctx, fz_device *devp)
{
fz_draw_device *dev = (fz_draw_device*)devp;
/* pop and free the stacks */
if (dev->top > dev->resolve_spots)
fz_throw(ctx, FZ_ERROR_GENERIC, "items left on stack in draw device: %d", dev->top);
if (dev->resolve_spots && dev->top)
{
fz_draw_state *state = &dev->stack[--dev->top];
fz_try(ctx)
{
fz_copy_pixmap_area_converting_seps(ctx, state[1].dest, state[0].dest, dev->proof_cs, fz_default_color_params, dev->default_cs);
assert(state[1].mask == NULL);
assert(state[1].shape == NULL);
assert(state[1].group_alpha == NULL);
}
fz_always(ctx)
{
fz_drop_pixmap(ctx, state[1].dest);
state[1].dest = NULL;
}
fz_catch(ctx)
fz_rethrow(ctx);
}
}
static void
fz_draw_drop_device(fz_context *ctx, fz_device *devp)
{
fz_draw_device *dev = (fz_draw_device*)devp;
fz_rasterizer *rast = dev->rast;
fz_drop_default_colorspaces(ctx, dev->default_cs);
fz_drop_colorspace(ctx, dev->proof_cs);
/* pop and free the stacks */
for (; dev->top > 0; dev->top--)
{
fz_draw_state *state = &dev->stack[dev->top - 1];
if (state[1].mask != state[0].mask)
fz_drop_pixmap(ctx, state[1].mask);
if (state[1].dest != state[0].dest)
fz_drop_pixmap(ctx, state[1].dest);
if (state[1].shape != state[0].shape)
fz_drop_pixmap(ctx, state[1].shape);
if (state[1].group_alpha != state[0].group_alpha)
fz_drop_pixmap(ctx, state[1].group_alpha);
}
/* We never free the dest/mask/shape at level 0, as:
* 1) dest is passed in and ownership remains with the caller.
* 2) shape and mask are NULL at level 0.
*/
if (dev->stack != &dev->init_stack[0])
fz_free(ctx, dev->stack);
fz_drop_scale_cache(ctx, dev->cache_x);
fz_drop_scale_cache(ctx, dev->cache_y);
fz_drop_rasterizer(ctx, rast);
}
fz_device *
new_draw_device(fz_context *ctx, fz_matrix transform, fz_pixmap *dest, const fz_aa_context *aa, const fz_irect *clip, fz_colorspace *proof_cs)
{
fz_draw_device *dev = fz_new_derived_device(ctx, fz_draw_device);
dev->super.drop_device = fz_draw_drop_device;
dev->super.close_device = fz_draw_close_device;
dev->super.fill_path = fz_draw_fill_path;
dev->super.stroke_path = fz_draw_stroke_path;
dev->super.clip_path = fz_draw_clip_path;
dev->super.clip_stroke_path = fz_draw_clip_stroke_path;
dev->super.fill_text = fz_draw_fill_text;
dev->super.stroke_text = fz_draw_stroke_text;
dev->super.clip_text = fz_draw_clip_text;
dev->super.clip_stroke_text = fz_draw_clip_stroke_text;
dev->super.ignore_text = fz_draw_ignore_text;
dev->super.fill_image_mask = fz_draw_fill_image_mask;
dev->super.clip_image_mask = fz_draw_clip_image_mask;
dev->super.fill_image = fz_draw_fill_image;
dev->super.fill_shade = fz_draw_fill_shade;
dev->super.pop_clip = fz_draw_pop_clip;
dev->super.begin_mask = fz_draw_begin_mask;
dev->super.end_mask = fz_draw_end_mask;
dev->super.begin_group = fz_draw_begin_group;
dev->super.end_group = fz_draw_end_group;
dev->super.begin_tile = fz_draw_begin_tile;
dev->super.end_tile = fz_draw_end_tile;
dev->super.render_flags = fz_draw_render_flags;
dev->super.set_default_colorspaces = fz_draw_set_default_colorspaces;
dev->proof_cs = fz_keep_colorspace(ctx, proof_cs);
dev->transform = transform;
dev->flags = 0;
dev->resolve_spots = 0;
dev->top = 0;
dev->stack = &dev->init_stack[0];
dev->stack_cap = STACK_SIZE;
dev->stack[0].dest = dest;
dev->stack[0].shape = NULL;
dev->stack[0].group_alpha = NULL;
dev->stack[0].mask = NULL;
dev->stack[0].blendmode = 0;
dev->stack[0].scissor.x0 = dest->x;
dev->stack[0].scissor.y0 = dest->y;
dev->stack[0].scissor.x1 = dest->x + dest->w;
dev->stack[0].scissor.y1 = dest->y + dest->h;
if (clip)
{
if (clip->x0 > dev->stack[0].scissor.x0)
dev->stack[0].scissor.x0 = clip->x0;
if (clip->x1 < dev->stack[0].scissor.x1)
dev->stack[0].scissor.x1 = clip->x1;
if (clip->y0 > dev->stack[0].scissor.y0)
dev->stack[0].scissor.y0 = clip->y0;
if (clip->y1 < dev->stack[0].scissor.y1)
dev->stack[0].scissor.y1 = clip->y1;
}
/* If we have no separations structure at all, then we want a
* simple composite rendering (with no overprint simulation).
* If we do have a separations structure, so: 1) Any
* 'disabled' separations are ignored. 2) Any 'composite'
* separations means we will need to do an overprint
* simulation.
*
* The supplied pixmaps 's' will match the number of
* 'spots' separations. If we have any 'composite'
* separations therefore, we'll need to make a new pixmap
* with a new (completely 'spots') separations structure,
* render to that, and then map down at the end.
*
* Unfortunately we can't produce this until we know what
* the default_colorspaces etc are, so set a flag for us
* to trigger on later.
*/
if (dest->seps || dev->proof_cs != NULL)
#if FZ_ENABLE_SPOT_RENDERING
dev->resolve_spots = 1;
#else
fz_throw(ctx, FZ_ERROR_GENERIC, "Spot rendering (and overprint/overprint simulation) not available in this build");
#endif
fz_try(ctx)
{
dev->rast = fz_new_rasterizer(ctx, aa);
dev->cache_x = fz_new_scale_cache(ctx);
dev->cache_y = fz_new_scale_cache(ctx);
}
fz_catch(ctx)
{
fz_drop_device(ctx, (fz_device*)dev);
fz_rethrow(ctx);
}
return (fz_device*)dev;
}
/*
Create a device to draw on a pixmap.
dest: Target pixmap for the draw device. See fz_new_pixmap*
for how to obtain a pixmap. The pixmap is not cleared by the
draw device, see fz_clear_pixmap* for how to clear it prior to
calling fz_new_draw_device. Free the device by calling
fz_drop_device.
transform: Transform from user space in points to device space in pixels.
*/
fz_device *
fz_new_draw_device(fz_context *ctx, fz_matrix transform, fz_pixmap *dest)
{
return new_draw_device(ctx, transform, dest, NULL, NULL, NULL);
}
/*
Create a device to draw on a pixmap.
dest: Target pixmap for the draw device. See fz_new_pixmap*
for how to obtain a pixmap. The pixmap is not cleared by the
draw device, see fz_clear_pixmap* for how to clear it prior to
calling fz_new_draw_device. Free the device by calling
fz_drop_device.
transform: Transform from user space in points to device space in pixels.
clip: Bounding box to restrict any marking operations of the
draw device.
*/
fz_device *
fz_new_draw_device_with_bbox(fz_context *ctx, fz_matrix transform, fz_pixmap *dest, const fz_irect *clip)
{
return new_draw_device(ctx, transform, dest, NULL, clip, NULL);
}
/*
Create a device to draw on a pixmap.
dest: Target pixmap for the draw device. See fz_new_pixmap*
for how to obtain a pixmap. The pixmap is not cleared by the
draw device, see fz_clear_pixmap* for how to clear it prior to
calling fz_new_draw_device. Free the device by calling
fz_drop_device.
transform: Transform from user space in points to device space in pixels.
proof_cs: Intermediate color space to map though when mapping to
color space defined by pixmap.
*/
fz_device *
fz_new_draw_device_with_proof(fz_context *ctx, fz_matrix transform, fz_pixmap *dest, fz_colorspace *cs)
{
return new_draw_device(ctx, transform, dest, NULL, NULL, cs);
}
/*
Create a device to draw on a pixmap.
dest: Target pixmap for the draw device. See fz_new_pixmap*
for how to obtain a pixmap. The pixmap is not cleared by the
draw device, see fz_clear_pixmap* for how to clear it prior to
calling fz_new_draw_device. Free the device by calling
fz_drop_device.
transform: Transform from user space in points to device space in pixels.
clip: Bounding box to restrict any marking operations of the
draw device.
proof_cs: Color space to render to prior to mapping to color space defined by pixmap.
*/
fz_device *
fz_new_draw_device_with_bbox_proof(fz_context *ctx, fz_matrix transform, fz_pixmap *dest, const fz_irect *clip, fz_colorspace *cs)
{
return new_draw_device(ctx, transform, dest, NULL, clip, cs);
}
fz_device *
fz_new_draw_device_type3(fz_context *ctx, fz_matrix transform, fz_pixmap *dest)
{
fz_draw_device *dev = (fz_draw_device*)fz_new_draw_device(ctx, transform, dest);
dev->flags |= FZ_DRAWDEV_FLAGS_TYPE3;
return (fz_device*)dev;
}
fz_irect *
fz_bound_path_accurate(fz_context *ctx, fz_irect *bbox, const fz_irect *scissor, const fz_path *path, const fz_stroke_state *stroke, fz_matrix ctm, float flatness, float linewidth)
{
fz_rasterizer *rast = fz_new_rasterizer(ctx, NULL);
fz_try(ctx)
{
if (stroke)
(void)fz_flatten_stroke_path(ctx, rast, path, stroke, ctm, flatness, linewidth, scissor, bbox);
else
(void)fz_flatten_fill_path(ctx, rast, path, ctm, flatness, scissor, bbox);
}
fz_always(ctx)
fz_drop_rasterizer(ctx, rast);
fz_catch(ctx)
fz_rethrow(ctx);
return bbox;
}
const char *fz_draw_options_usage =
"Raster output options:\n"
"\trotate=N: rotate rendered pages N degrees counterclockwise\n"
"\tresolution=N: set both X and Y resolution in pixels per inch\n"
"\tx-resolution=N: X resolution of rendered pages in pixels per inch\n"
"\ty-resolution=N: Y resolution of rendered pages in pixels per inch\n"
"\twidth=N: render pages to fit N pixels wide (ignore resolution option)\n"
"\theight=N: render pages to fit N pixels tall (ignore resolution option)\n"
"\tcolorspace=(gray|rgb|cmyk): render using specified colorspace\n"
"\talpha: render pages with alpha channel and transparent background\n"
"\tgraphics=(aaN|cop|app): set the rasterizer to use\n"
"\ttext=(aaN|cop|app): set the rasterizer to use for text\n"
"\t\taaN=antialias with N bits (0 to 8)\n"
"\t\tcop=center of pixel\n"
"\t\tapp=any part of pixel\n"
"\n";
static int parse_aa_opts(const char *val)
{
if (fz_option_eq(val, "cop"))
return 9;
if (fz_option_eq(val, "app"))
return 10;
if (val[0] == 'a' && val[1] == 'a' && val[2] >= '0' && val[2] <= '9')
return fz_clampi(fz_atoi(&val[2]), 0, 8);
return 8;
}
/*
Parse draw device options from a comma separated key-value string.
*/
fz_draw_options *
fz_parse_draw_options(fz_context *ctx, fz_draw_options *opts, const char *args)
{
const char *val;
memset(opts, 0, sizeof *opts);
opts->x_resolution = 96;
opts->y_resolution = 96;
opts->rotate = 0;
opts->width = 0;
opts->height = 0;
opts->colorspace = fz_device_rgb(ctx);
opts->alpha = 0;
opts->graphics = fz_aa_level(ctx);
opts->text = fz_text_aa_level(ctx);
if (fz_has_option(ctx, args, "rotate", &val))
opts->rotate = fz_atoi(val);
if (fz_has_option(ctx, args, "resolution", &val))
opts->x_resolution = opts->y_resolution = fz_atoi(val);
if (fz_has_option(ctx, args, "x-resolution", &val))
opts->x_resolution = fz_atoi(val);
if (fz_has_option(ctx, args, "y-resolution", &val))
opts->y_resolution = fz_atoi(val);
if (fz_has_option(ctx, args, "width", &val))
opts->width = fz_atoi(val);
if (fz_has_option(ctx, args, "height", &val))
opts->height = fz_atoi(val);
if (fz_has_option(ctx, args, "colorspace", &val))
{
if (fz_option_eq(val, "gray") || fz_option_eq(val, "grey") || fz_option_eq(val, "mono"))
opts->colorspace = fz_device_gray(ctx);
else if (fz_option_eq(val, "rgb"))
opts->colorspace = fz_device_rgb(ctx);
else if (fz_option_eq(val, "cmyk"))
opts->colorspace = fz_device_cmyk(ctx);
else
fz_throw(ctx, FZ_ERROR_GENERIC, "unknown colorspace in options");
}
if (fz_has_option(ctx, args, "alpha", &val))
opts->alpha = fz_option_eq(val, "yes");
if (fz_has_option(ctx, args, "graphics", &val))
opts->text = opts->graphics = parse_aa_opts(val);
if (fz_has_option(ctx, args, "text", &val))
opts->text = parse_aa_opts(val);
/* Sanity check values */
if (opts->x_resolution <= 0) opts->x_resolution = 96;
if (opts->y_resolution <= 0) opts->y_resolution = 96;
if (opts->width < 0) opts->width = 0;
if (opts->height < 0) opts->height = 0;
return opts;
}
/*
Create a new pixmap and draw device, using the specified options.
options: Options to configure the draw device, and choose the resolution and colorspace.
mediabox: The bounds of the page in points.
pixmap: An out parameter containing the newly created pixmap.
*/
fz_device *
fz_new_draw_device_with_options(fz_context *ctx, const fz_draw_options *opts, fz_rect mediabox, fz_pixmap **pixmap)
{
fz_aa_context aa = ctx->aa;
float x_zoom = opts->x_resolution / 72.0f;
float y_zoom = opts->y_resolution / 72.0f;
float page_w = mediabox.x1 - mediabox.x0;
float page_h = mediabox.y1 - mediabox.y0;
float w = opts->width;
float h = opts->height;
float x_scale, y_scale;
fz_matrix transform;
fz_irect bbox;
fz_device *dev;
fz_set_rasterizer_graphics_aa_level(ctx, &aa, opts->graphics);
fz_set_rasterizer_text_aa_level(ctx, &aa, opts->text);
if (w > 0)
{
x_scale = w / page_w;
if (h > 0)
y_scale = h / page_h;
else
y_scale = floorf(page_h * x_scale + 0.5f) / page_h;
}
else if (h > 0)
{
y_scale = h / page_h;
x_scale = floorf(page_w * y_scale + 0.5f) / page_w;
}
else
{
x_scale = floorf(page_w * x_zoom + 0.5f) / page_w;
y_scale = floorf(page_h * y_zoom + 0.5f) / page_h;
}
transform = fz_pre_rotate(fz_scale(x_scale, y_scale), opts->rotate);
bbox = fz_irect_from_rect(fz_transform_rect(mediabox, transform));
*pixmap = fz_new_pixmap_with_bbox(ctx, opts->colorspace, bbox, NULL, opts->alpha);
fz_try(ctx)
{
fz_set_pixmap_resolution(ctx, *pixmap, opts->x_resolution, opts->y_resolution);
if (opts->alpha)
fz_clear_pixmap(ctx, *pixmap);
else
fz_clear_pixmap_with_value(ctx, *pixmap, 255);
dev = new_draw_device(ctx, transform, *pixmap, &aa, NULL, NULL);
}
fz_catch(ctx)
{
fz_drop_pixmap(ctx, *pixmap);
*pixmap = NULL;
fz_rethrow(ctx);
}
return dev;
}