Zelda64Recomp/patches/effect_patches.c

264 lines
11 KiB
C

#include "patches.h"
#include "graphics.h"
#include "sys_cfb.h"
#include "z64view.h"
#include "z64circle_tex.h"
#include "transform_ids.h"
extern TransitionOverlay gTransitionOverlayTable[];
extern Gfx sTransWipe3DL[];
#define THIS ((TransitionWipe3*)thisx)
// @recomp patched to scale the transition based on aspect ratio
void TransitionWipe3_Draw(void* thisx, Gfx** gfxP) {
Gfx* gfx = *gfxP;
Mtx* modelView = &THIS->modelView[THIS->frame];
f32 scale = 14.8f;
Gfx* texScroll;
// @recomp Modify the scale based on the aspect ratio to make sure the transition circle covers the whole screen
float original_aspect_ratio = ((float)SCREEN_WIDTH) / ((float)SCREEN_HEIGHT);
scale *= recomp_get_aspect_ratio(original_aspect_ratio) / original_aspect_ratio;
THIS->frame ^= 1;
gDPPipeSync(gfx++);
texScroll = Gfx_BranchTexScroll(&gfx, THIS->scrollX, THIS->scrollY, 16, 64);
gSPSegment(gfx++, 0x09, texScroll);
gSPSegment(gfx++, 0x08, THIS->curTexture);
gDPSetColor(gfx++, G_SETPRIMCOLOR, THIS->color.rgba);
gDPSetColor(gfx++, G_SETENVCOLOR, THIS->color.rgba);
gSPMatrix(gfx++, &THIS->projection, G_MTX_NOPUSH | G_MTX_LOAD | G_MTX_PROJECTION);
gSPPerspNormalize(gfx++, THIS->normal);
gSPMatrix(gfx++, &THIS->lookAt, G_MTX_NOPUSH | G_MTX_MUL | G_MTX_PROJECTION);
if (scale != 1.0f) {
guScale(modelView, scale, scale, 1.0f);
gSPMatrix(gfx++, modelView, G_MTX_NOPUSH | G_MTX_LOAD | G_MTX_MODELVIEW);
}
// sTransWipe3DL is an overlay symbol, so its addresses need to be offset to get the actual loaded vram address.
// TODO remove this once the recompiler is able to handle overlay symbols automatically for patch functions.
ptrdiff_t reloc_offset;
TransitionOverlay* overlay_entry = &gTransitionOverlayTable[FBDEMO_WIPE3];
reloc_offset = (uintptr_t)Lib_PhysicalToVirtual(overlay_entry->loadInfo.addr) - (uintptr_t)overlay_entry->vramStart;
gSPDisplayList(gfx++, (Gfx*)((u8*)sTransWipe3DL + reloc_offset));
gDPPipeSync(gfx++);
*gfxP = gfx;
}
#undef THIS
typedef enum {
/* 0 */ MOTION_BLUR_OFF,
/* 1 */ MOTION_BLUR_SETUP,
/* 2 */ MOTION_BLUR_PROCESS
} MotionBlurStatus;
extern u8 sMotionBlurStatus;
extern s32 gFramerateDivisor;
// @recomp Motion blur works fine normally, but when running at a higher framerate the effect is much less pronounced
// as the previous frames decay quicker due to there being more frames drawn in the same period of time.
void Play_DrawMotionBlur(PlayState* this) {
GraphicsContext* gfxCtx = this->state.gfxCtx;
s32 alpha;
Gfx* gfx;
Gfx* gfxHead;
if (R_MOTION_BLUR_PRIORITY_ENABLED) {
alpha = R_MOTION_BLUR_PRIORITY_ALPHA;
if (sMotionBlurStatus == MOTION_BLUR_OFF) {
sMotionBlurStatus = MOTION_BLUR_SETUP;
}
} else if (R_MOTION_BLUR_ENABLED) {
alpha = R_MOTION_BLUR_ALPHA;
if (sMotionBlurStatus == MOTION_BLUR_OFF) {
sMotionBlurStatus = MOTION_BLUR_SETUP;
}
} else {
alpha = 0;
sMotionBlurStatus = MOTION_BLUR_OFF;
}
if (sMotionBlurStatus != MOTION_BLUR_OFF) {
OPEN_DISPS(gfxCtx);
gfxHead = POLY_OPA_DISP;
gfx = Gfx_Open(gfxHead);
gSPDisplayList(OVERLAY_DISP++, gfx);
this->pauseBgPreRender.fbuf = gfxCtx->curFrameBuffer;
this->pauseBgPreRender.fbufSave = this->unk_18E64;
// @recomp Scale alpha based on the target framerate so that the blur effect decays at an equivalent rate
// to how it does in the original game's framerate.
s32 original_alpha = alpha;
f32 exponent = 20.0f / recomp_get_target_framerate(gFramerateDivisor);
f32 alpha_float = recomp_powf(alpha / 255.0f, exponent);
// Clamp the blur alpha, which ensures that the output color converges to within a reasonable delta of the target color
// when using an R8G8B8A8 framebuffer. Although this makes the effect less noticeable at high framerates,
// not clamping leads to noticeable image retention.
// Skip clamping if high precision framebuffers are in use, as there's no risk of ghosting with those.
if (!recomp_high_precision_fb_enabled()) {
alpha_float = MIN(alpha_float, 0.825f);
}
alpha = (s32)(alpha_float * 255.0f);
// @recomp Set the dither noise strength based on the resolution scale to make it easier to see at higher resolutions.
float res_scale = recomp_get_resolution_scale();
float dither_noise_strength = CLAMP(1.0 + (res_scale - 1.0f) / 8.0f, 1.0f, 2.0f);
// recomp_printf("res scale: %5.3f dither noise strength: %5.3f\n", res_scale, dither_noise_strength);
gEXSetDitherNoiseStrength(OVERLAY_DISP++, dither_noise_strength);
if (sMotionBlurStatus == MOTION_BLUR_PROCESS) {
func_80170AE0(&this->pauseBgPreRender, &gfx, alpha);
} else {
sMotionBlurStatus = MOTION_BLUR_PROCESS;
}
PreRender_SaveFramebuffer(&this->pauseBgPreRender, &gfx);
gSPEndDisplayList(gfx++);
Gfx_Close(gfxHead, gfx);
POLY_OPA_DISP = gfx;
CLOSE_DISPS(gfxCtx);
}
}
// @recomp Patched to increase the scale based on the aspect ratio.
void Actor_DrawLensOverlay(Gfx** gfxP, s32 lensMaskSize) {
// @recomp Calculate the increase in aspect ratio.
f32 original_aspect_ratio = (float)SCREEN_WIDTH / SCREEN_HEIGHT;
f32 aspect_ratio_scale = recomp_get_aspect_ratio(original_aspect_ratio) / original_aspect_ratio;
// @recomp Increase the circle's scale based on the aspect ratio scale. Also increase the base scaling
// from 0.003f to 0.004f to account for overscan removal.
TransitionCircle_LoadAndSetTexture(gfxP, gCircleTex, 4, 0, 6, 6,
((LENS_MASK_ACTIVE_SIZE - lensMaskSize) * 0.004f * aspect_ratio_scale) + 1.0f);
}
// @recomp Patched to use ortho tris for interpolation and to prevent the telescope and lens effects from getting stretched wide.
void TransitionCircle_LoadAndSetTexture(Gfx** gfxp, void const* texture, s32 fmt, s32 arg3, s32 masks, s32 maskt,
f32 arg6) {
Gfx* gfx = *gfxp;
s32 xh = gCfbWidth;
s32 yh = gCfbHeight;
s32 width = 1 << masks;
s32 height = 1 << maskt;
f32 s;
f32 t;
// @recomp Use floats for dtdy and dsdx.
f32 dtdy;
f32 dsdx;
gDPLoadTextureBlock_4b(gfx++, texture, fmt, width, height, 0, G_TX_MIRROR | G_TX_CLAMP, G_TX_MIRROR | G_TX_CLAMP,
masks, maskt, G_TX_NOLOD, G_TX_NOLOD);
gDPSetTileSize(gfx++, G_TX_RENDERTILE, 0, 0, ((width * 2) - 1) << 2, ((height * 2) - 1) << 2);
s = ((1.0f - (1.0f / arg6)) * (SCREEN_WIDTH / 2)) + 70.0f;
t = ((1.0f - (1.0f / arg6)) * (SCREEN_HEIGHT / 2)) + 50.0f;
// @recomp Uncap the s and t calculations as they go into a matrix now instead of being used as texture coordinates.
// if (s < -1023.0f) {
// s = -1023.0f;
// }
// if (t < -1023.0f) {
// t = -1023.0f;
// }
// if ((s <= -1023.0f) || (t <= -1023.0f)) {
// dsdx = 0;
// dtdy = 0;
// } else {
dsdx = ((SCREEN_WIDTH - (2.0f * s)) / gScreenWidth) * (1 << 10);
dtdy = ((SCREEN_HEIGHT - (2.0f * t)) / gScreenHeight) * (1 << 10);
// }
// @recomp Push the old RDP/RSP params.
gEXPushProjectionMatrix(gfx++);
gEXPushGeometryMode(gfx++);
gEXMatrixGroupSimple(gfx++, CIRCLE_OVERLAY_TRANSFORM_PROJECTION_ID, G_EX_PUSH, G_MTX_PROJECTION,
G_EX_COMPONENT_INTERPOLATE, G_EX_COMPONENT_INTERPOLATE, G_EX_COMPONENT_INTERPOLATE, G_EX_COMPONENT_INTERPOLATE, G_EX_COMPONENT_INTERPOLATE, G_EX_ORDER_LINEAR, G_EX_EDIT_NONE);
gEXMatrixGroupSimple(gfx++, CIRCLE_OVERLAY_TRANSFORM_ID, G_EX_PUSH, G_MTX_MODELVIEW,
G_EX_COMPONENT_INTERPOLATE, G_EX_COMPONENT_INTERPOLATE, G_EX_COMPONENT_INTERPOLATE, G_EX_COMPONENT_INTERPOLATE, G_EX_COMPONENT_INTERPOLATE, G_EX_ORDER_LINEAR, G_EX_EDIT_NONE);
// @recomp Allocate a matrix and vertices in the displaylist because there's no handle to the GfxContext here.
Mtx* ortho_matrix = (Mtx*)(gfx + 1);
Mtx* model_matrix = ortho_matrix + 1;
Gfx* after_matrix = (Gfx*)(model_matrix + 4);
gSPBranchList(gfx++, after_matrix);
gfx = after_matrix;
// @recomp Set up an ortho projection matrix.
guOrtho(ortho_matrix, -SCREEN_WIDTH / 2, SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2, -SCREEN_HEIGHT / 2, -1.0f, 1.0f, 1.0f);
gSPMatrix(gfx++, ortho_matrix, G_MTX_NOPUSH | G_MTX_LOAD | G_MTX_PROJECTION);
// @recomp Set up a scale model matrix, using the original texcoord scaling to calculate the matrix's scale.
float scale_x = 1024.0f / MAX((float)dsdx, 0.1f);
float scale_y = 1024.0f / MAX((float)dtdy, 0.1f);
if (arg6 == 0) {
scale_x = 0.0f;
scale_y = 0.0f;
}
guScale(model_matrix, scale_x, scale_y, 1.0f);
// @recomp Enable texturing and set geometry mode.
gSPTexture(gfx++, 0x8000 * width / 64, 0x8000 * height / 64, 0, G_TX_RENDERTILE, G_ON);
gSPLoadGeometryMode(gfx++, 0);
// @recomp Static variable to hold the lens overlay vertices.
static Vtx overlay_verts[] = {
// The quad that holds the lens itself.
{{{ -64, -64, 0}, 0, { 0, 0}, {0, 0, 0, 255}}},
{{{ 64, -64, 0}, 0, {512 << 5, 0}, {0, 0, 0, 255}}},
{{{ -64, 64, 0}, 0, { 0, 512 << 5}, {0, 0, 0, 255}}},
{{{ 64, 64, 0}, 0, {512 << 5, 512 << 5}, {0, 0, 0, 255}}},
// The verts of the quad around the lens overlay to fill in the rest of the screen.
{{{-32000, -8000, 0}, 0, { 0, 0}, {0, 0, 0, 255}}},
{{{ 32000, -8000, 0}, 0, {512 << 5, 0}, {0, 0, 0, 255}}},
{{{-32000, 8000, 0}, 0, { 0, 512 << 5}, {0, 0, 0, 255}}},
{{{ 32000, 8000, 0}, 0, {512 << 5, 512 << 5}, {0, 0, 0, 255}}},
};
// 4 5
// 0 1
// 2 3
// 6 7
// @recomp Load the verts.
gSPMatrix(gfx++, model_matrix, G_MTX_PUSH | G_MTX_LOAD | G_MTX_MODELVIEW);
gSPVertex(gfx++, &overlay_verts[0], 4, 0);
gSPMatrix(gfx++, &gIdentityMtx, G_MTX_PUSH | G_MTX_LOAD | G_MTX_MODELVIEW);
gSPVertex(gfx++, &overlay_verts[4], 4, 4);
// @recomp Draw the quad containing the lens overlay.
gSP2Triangles(gfx++, 0, 1, 3, 0x0, 0, 3, 2, 0x0);
// @recomp Draw the quad above the lens overlay.
gSP2Triangles(gfx++, 4, 5, 1, 0x0, 4, 1, 0, 0x0);
// @recomp Draw the quad below the lens overlay.
gSP2Triangles(gfx++, 2, 3, 7, 0x0, 2, 7, 6, 0x0);
// @recomp Draw the quad to the left of the lens overlay.
gSP2Triangles(gfx++, 4, 0, 2, 0x0, 4, 2, 6, 0x0);
// @recomp Draw the quad to the right of the lens overlay.
gSP2Triangles(gfx++, 1, 5, 7, 0x0, 1, 7, 3, 0x0);
// @recomp Restore the old RDP/RSP params.
gEXPopProjectionMatrix(gfx++);
gEXPopGeometryMode(gfx++);
gSPPopMatrix(gfx++, G_MTX_MODELVIEW);
gEXPopMatrixGroup(gfx++, G_MTX_MODELVIEW);
gEXPopMatrixGroup(gfx++, G_MTX_PROJECTION);
gDPPipeSync(gfx++);
*gfxp = gfx;
}