#ifndef __RECOMP_H__ #define __RECOMP_H__ #include #include #include #include #include #if 0 // treat GPRs as 32-bit, should be better codegen typedef uint32_t gpr; #define SIGNED(val) \ ((int32_t)(val)) #else typedef uint64_t gpr; #define SIGNED(val) \ ((int64_t)(val)) #endif #define ADD32(a, b) \ ((gpr)(int32_t)((a) + (b))) #define SUB32(a, b) \ ((gpr)(int32_t)((a) - (b))) #define MEM_W(offset, reg) \ (*(int32_t*)(rdram + ((((gpr)(reg) + (gpr)(offset))) - 0xFFFFFFFF80000000ULL))) //(*(int32_t*)(rdram + ((((gpr)(reg) + (gpr)(offset))) & 0x3FFFFFF))) #define MEM_H(offset, reg) \ (*(int16_t*)(rdram + ((((gpr)(reg) + (gpr)(offset)) ^ 2) - 0xFFFFFFFF80000000ULL))) //(*(int16_t*)(rdram + ((((gpr)(reg) + (gpr)(offset)) ^ 2) & 0x3FFFFFF))) #define MEM_B(offset, reg) \ (*(int8_t*)(rdram + ((((gpr)(reg) + (gpr)(offset)) ^ 3) - 0xFFFFFFFF80000000ULL))) //(*(int8_t*)(rdram + ((((gpr)(reg) + (gpr)(offset)) ^ 3) & 0x3FFFFFF))) #define MEM_HU(offset, reg) \ (*(uint16_t*)(rdram + ((((gpr)(reg) + (gpr)(offset)) ^ 2) - 0xFFFFFFFF80000000ULL))) //(*(uint16_t*)(rdram + ((((gpr)(reg) + (gpr)(offset)) ^ 2) & 0x3FFFFFF))) #define MEM_BU(offset, reg) \ (*(uint8_t*)(rdram + ((((gpr)(reg) + (gpr)(offset)) ^ 3) - 0xFFFFFFFF80000000ULL))) //(*(uint8_t*)(rdram + ((((gpr)(reg) + (gpr)(offset)) ^ 3) & 0x3FFFFFF))) #define SD(val, offset, reg) { \ *(uint32_t*)(rdram + ((((gpr)(reg) + (gpr)(offset) + 4)) - 0xFFFFFFFF80000000ULL)) = (uint32_t)((gpr)(val) >> 0); \ *(uint32_t*)(rdram + ((((gpr)(reg) + (gpr)(offset) + 0)) - 0xFFFFFFFF80000000ULL)) = (uint32_t)((gpr)(val) >> 32); \ } //#define SD(val, offset, reg) { \ // *(uint32_t*)(rdram + ((((gpr)(reg) + (gpr)(offset) + 4)) & 0x3FFFFFF)) = (uint32_t)((val) >> 32); \ // *(uint32_t*)(rdram + ((((gpr)(reg) + (gpr)(offset) + 0)) & 0x3FFFFFF)) = (uint32_t)((val) >> 0); \ //} static inline uint64_t load_doubleword(uint8_t* rdram, gpr reg, gpr offset) { uint64_t ret = 0; uint64_t lo = (uint64_t)(uint32_t)MEM_W(reg, offset + 4); uint64_t hi = (uint64_t)(uint32_t)MEM_W(reg, offset + 0); ret = (lo << 0) | (hi << 32); return ret; } #define LD(offset, reg) \ load_doubleword(rdram, offset, reg) static inline gpr do_lwl(uint8_t* rdram, gpr initial_value, gpr offset, gpr reg) { // Calculate the overall address gpr address = (offset + reg); // Load the aligned word gpr word_address = address & ~0x3; uint32_t loaded_value = MEM_W(0, word_address); // Mask the existing value and shift the loaded value appropriately gpr misalignment = address & 0x3; gpr masked_value = initial_value & ~(0xFFFFFFFFu << (misalignment * 8)); loaded_value <<= (misalignment * 8); // Cast to int32_t to sign extend first return (gpr)(int32_t)(masked_value | loaded_value); } static inline gpr do_lwr(uint8_t* rdram, gpr initial_value, gpr offset, gpr reg) { // Calculate the overall address gpr address = (offset + reg); // Load the aligned word gpr word_address = address & ~0x3; uint32_t loaded_value = MEM_W(0, word_address); // Mask the existing value and shift the loaded value appropriately gpr misalignment = address & 0x3; gpr masked_value = initial_value & ~(0xFFFFFFFFu >> (24 - misalignment * 8)); loaded_value >>= (24 - misalignment * 8); // Cast to int32_t to sign extend first return (gpr)(int32_t)(masked_value | loaded_value); } static inline void do_swl(uint8_t* rdram, gpr offset, gpr reg, gpr val) { // Calculate the overall address gpr address = (offset + reg); // Get the initial value of the aligned word gpr word_address = address & ~0x3; uint32_t initial_value = MEM_W(0, word_address); // Mask the initial value and shift the input value appropriately gpr misalignment = address & 0x3; uint32_t masked_initial_value = initial_value & ~(0xFFFFFFFFu >> (misalignment * 8)); uint32_t shifted_input_value = ((uint32_t)val) >> (misalignment * 8); MEM_W(0, word_address) = masked_initial_value | shifted_input_value; } static inline void do_swr(uint8_t* rdram, gpr offset, gpr reg, gpr val) { // Calculate the overall address gpr address = (offset + reg); // Get the initial value of the aligned word gpr word_address = address & ~0x3; uint32_t initial_value = MEM_W(0, word_address); // Mask the initial value and shift the input value appropriately gpr misalignment = address & 0x3; uint32_t masked_initial_value = initial_value & ~(0xFFFFFFFFu << (24 - misalignment * 8)); uint32_t shifted_input_value = ((uint32_t)val) << (24 - misalignment * 8); MEM_W(0, word_address) = masked_initial_value | shifted_input_value; } #define S32(val) \ ((int32_t)(val)) #define U32(val) \ ((uint32_t)(val)) #define S64(val) \ ((int64_t)(val)) #define U64(val) \ ((uint64_t)(val)) #define MUL_S(val1, val2) \ ((val1) * (val2)) #define MUL_D(val1, val2) \ ((val1) * (val2)) #define DIV_S(val1, val2) \ ((val1) / (val2)) #define DIV_D(val1, val2) \ ((val1) / (val2)) #define CVT_S_W(val) \ ((float)((int32_t)(val))) #define CVT_D_W(val) \ ((double)((int32_t)(val))) #define CVT_D_S(val) \ ((double)(val)) #define CVT_S_D(val) \ ((float)(val)) #define TRUNC_W_S(val) \ ((int32_t)(val)) #define TRUNC_W_D(val) \ ((int32_t)(val)) #define TRUNC_L_S(val) \ ((int64_t)(val)) #define TRUNC_L_D(val) \ ((int64_t)(val)) #define DEFAULT_ROUNDING_MODE 0 static inline int32_t do_cvt_w_s(float val, unsigned int rounding_mode) { switch (rounding_mode) { case 0: // round to nearest value return (int32_t)lroundf(val); case 1: // round to zero (truncate) return (int32_t)val; case 2: // round to positive infinity (ceil) return (int32_t)ceilf(val); case 3: // round to negative infinity (floor) return (int32_t)floorf(val); } assert(0); return 0; } #define CVT_W_S(val) \ do_cvt_w_s(val, rounding_mode) static inline int32_t do_cvt_w_d(double val, unsigned int rounding_mode) { switch (rounding_mode) { case 0: // round to nearest value return (int32_t)lround(val); case 1: // round to zero (truncate) return (int32_t)val; case 2: // round to positive infinity (ceil) return (int32_t)ceil(val); case 3: // round to negative infinity (floor) return (int32_t)floor(val); } assert(0); return 0; } #define CVT_W_D(val) \ do_cvt_w_d(val, rounding_mode) #define NAN_CHECK(val) \ assert(val == val) //#define NAN_CHECK(val) typedef union { double d; struct { float fl; float fh; }; struct { uint32_t u32l; uint32_t u32h; }; uint64_t u64; } fpr; typedef struct { gpr r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31; fpr f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, f26, f27, f28, f29, f30, f31; uint64_t hi, lo; uint32_t* f_odd; uint32_t status_reg; uint8_t mips3_float_mode; } recomp_context; // Checks if the target is an even float register or that mips3 float mode is enabled #define CHECK_FR(ctx, idx) \ assert(((idx) & 1) == 0 || (ctx)->mips3_float_mode) #ifdef __cplusplus extern "C" { #endif void cop0_status_write(recomp_context* ctx, gpr value); gpr cop0_status_read(recomp_context* ctx); void switch_error(const char* func, uint32_t vram, uint32_t jtbl); void do_break(uint32_t vram); typedef void (recomp_func_t)(uint8_t* rdram, recomp_context* ctx); recomp_func_t* get_function(int32_t vram); #define LOOKUP_FUNC(val) \ get_function((int32_t)(val)) extern int32_t section_addresses[]; #define LO16(x) \ ((x) & 0xFFFF) #define HI16(x) \ (((x) >> 16) + (((x) >> 15) & 1)) #define RELOC_HI16(section_index, offset) \ HI16(section_addresses[section_index] + (offset)) #define RELOC_LO16(section_index, offset) \ LO16(section_addresses[section_index] + (offset)) // For Banjo-Tooie void recomp_syscall_handler(uint8_t* rdram, recomp_context* ctx, int32_t instruction_vram); // For the Mario Party games (not working) //// This has to be in this file so it can be inlined //struct jmp_buf_storage { // jmp_buf buffer; //}; // //struct RecompJmpBuf { // int32_t owner; // struct jmp_buf_storage* storage; // uint64_t magic; //}; // //// Randomly generated constant //#define SETJMP_MAGIC 0xe17afdfa939a437bu // //int32_t osGetThreadEx(void); // //#define setjmp_recomp(rdram, ctx) { \ // struct RecompJmpBuf* buf = (struct RecompJmpBuf*)(&rdram[(uint64_t)ctx->r4 - 0xFFFFFFFF80000000]); \ // \ // /* Check if this jump buffer was previously set up */ \ // if (buf->magic == SETJMP_MAGIC) { \ // /* If so, free the old jmp_buf */ \ // free(buf->storage); \ // } \ // \ // buf->magic = SETJMP_MAGIC; \ // buf->owner = osGetThreadEx(); \ // buf->storage = (struct jmp_buf_storage*)calloc(1, sizeof(struct jmp_buf_storage)); \ // ctx->r2 = setjmp(buf->storage->buffer); \ //} void pause_self(uint8_t *rdram); #ifdef __cplusplus } #endif #endif